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Chapter 1

INTRODUCTION TO MODEL

PREDICTIVE CONTROL

1.1 BACKGROUND FOR MPC DEVELOPMENT

Two main driving forces for a new process control paradigm in the late 70's

� early 80's:

� Energy crisis + global competition + environmental reg.

+

{ process integration

{ reduced design / safety margin

{ real-time optimization

{ tighter quality control

+

higher demand on process control.

� (Remarkable) advances in microprocessor technology.
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{ cheap, fast and reliable medium for implementation.

{ network environment(e.g., DCS) conductive to hierarchical approach.

Industry's response ) MPC

1.2 WHAT'S MPC

It's a computer control system.

PLANT

SAMPLERHOLD

CONTROL
ALGORITHM

1  2  3  4  5  6 1   2  3  4  .  .   .

On - Line
Optimizer

memory model

CLOCK

COMPUTER
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It's a computer control system consisting of an observer & an optimizer.

The optimization is based on prediction of future behavior of y.

MPC(software packages) is sold under di�erent names:

� DMC (Dynamic Matrix Control, now AspenTech)

� IDCOM (Setpoint, now AspenTech)

� SMCA (Setpoint, now AspenTech)

� RMPCT (Honeywell)

� PCT (Pro�matics)

7
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� HEICON (Adersa)

� OPC (Treiber)

� MAC

� IMC

� GPC

� GMC

� UPC

...

It's major features are

� model based

� explicit prediction of future system behavior

� explicit consideration of constraints

� use of on-line mathematical programming

� receding horizon control : repeated computation of open-loop optimal

trajectory with feedback update ) implicit feedback control.

1.3 WHY MPC?

Di�cult elements for process control:

� delay, inverse response

� interaction

8
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� constraints

� competing optimization requirements

MPC provides a systematic, uni�ed solution to problems with these charac-

teristics.

1.3.1 SOME EXAMPLES

Example I : Blending systems (input constraints)

Valve
Positions

Blending System
        Model total blend flow

Additive A

stock

Additive B

stock

Stock

Additive A

Additive B

� control rA & rB (�rst priority).

� control q if possible (second priority).

� possibility of valve saturation must be taken into account.

9
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Classical Solution :

FT

FC

FT

FT

FC >

X

X

FC

FT

<

VPC95%
Setpoint

Valve-position
controller

Feedback

Setpoint

Selector

Total
blended

flow

Stock

Ratio
Setpoint

Ratio
Setpoint

Additive A

Additive B

Setpoint

Blend of
A and B

Setpoint

High
Selector

MPC Solution :

At t=k, solve

min
ui

pX
i=1



2
64 (rA)k+ijk

(rB)k+ijk

3
75�

2
64 (rA)ref

(rB)ref

3
75

2

Q

+ kqk+ijk � qrefk
2
R

Q� R

2
66664
(u1)min

(u2)min

(u3)min

3
77775 �

2
66664
(u1)j

(u2)j

(u3)j

3
77775 �

2
66664
(u1)max

(u3)max

(u2)max

3
77775 ; j = 0; � � � ; p� 1
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Example II : Two-point control in a distillation column (input con-

straints, interaction)

0.5

- 0.5

- 0.5

0.5

� strong interaction

� \wind-up" during saturation

� saturation of an input requires recoordination of the other input

11



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

Clasical Solution: Two single-loop controllers with anti-windup scheme

(decouplers not shown)

C1

C2

-0.5

0.5

L

V

+

+

-

-
(T2)ref

(T1)ref

PID w/ anti-windup

PID w/ anti-windup

D1

G
D2

+

+

+

+
T1

T2

-0.5

0.5

� T1 controller does not know that V has saturated and vice versa )

coordination of the other input during the saturation of one input is

impossible.

� mode-switching logic is di�cult to design / debug (can you do it?) and

causes "bumps", etc.
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MPC Solution:

T1

T2

-0.5

0.5

-0.5

0.5

MPC

+

D1

G
D2

+

+

+

L

V

F Z
F

MIMO
Model

(T1)ref

(T2)ref

Constraints
-0.5 0.5L
-0.5 0.5V

At t = k, solve

min
�Uk

pX
i=1



2
64 (T1)k+ijk

(T2)k+ijk

3
75�

2
64 (T1)ref

(T2)ref

3
75

2

Q

+
m�1X
i=0



2
64 �Lk+ijk

�Vk+ijk

3
75

2

R

with 2
64 Lmin

Vmin

3
75 �

2
64 Lk+ijk

Vk+ijk

3
75 �

2
64 Lmax

Vmax

3
75 for i = 0; � � � ;m� 1

� easy to design / debug / recon�gure.

� anti-windup is automatic.

� optimal coordination of the inputs is automatic.
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Performance of classical solution vs. MPC

SISO loops w/ anti-windup & decoupler (no mode switching):

14



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

Example III : Override control in compressor(output constraint)

� control the owrate

� but maintain P � Pmax

Classical Solution :

SC

PCFC

Motor

<

Discharge

Compressor

LS

Feed
back

Press

Flow

Set

Set

Time
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MPC Solution:

motor speed

flowrate

pressure

Compressor
    Model

At t = k, solve

min
�Uk

pX
i=1

qk+ijk � qref
2
Q
+

m�1X
i=0

�uk+ijk
2
R

with

Pk+ijk � Pmax for i = 1; � � � ; p
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Example IV : Override control in surge tank(output constraints)

� control the outlet owrate

� but maintain L � Lmin

Classical Solution :

FC
1

LC
1 LS

PI

Hot
Staurated

Liquid

vp q

L
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MPC Solution:

Surge tank
    Model

Pump speed

flowrate

liquid level

At t = k, solve

min
�Uk

pX
i=1

qk+ijk � qref
2
Q
+

m�1X
i=0

�uk+ijk
2
R

with

Lk+ijk � Lmin for i = 1; � � � ; p
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Example V : Valve position control in air distribution network (op-

timization requirement)

� control the owrates of individual channels

� minimize the air compression

Classical Solution :

>

HS

SC
PT

Header

AIR
compressor

VPC

PC

Valve-position
controller

Feedback

Header
pressure

Signals
from

individual
process
control
loops

Process
demands

for air
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MPC Solution :

Air Distribution
     Network
       Model

Valve
Positions

Header
Pressure

PRIMARY
CONTROL VARIABLES

air flow rates

Valve positions

SECONDARY 
CONTROL VARIABLES

At t = k, solve

min
�Uk

pX
i=1



2
666664
(q1)k+ijk

...

(qn)k+ijk

3
777775�

2
666664
(q1)ref

...

(qn)ref

3
777775



2

Q

+
m�1X
i=1

Pk+ijk � Pmin

2
R

with Q� R and

2
666666664

Pmin

(u1)min

...

(un)min

3
777777775
�

2
666666664

Pk+ijk

(u1)k+ijk
...

(un)k+ijk

3
777777775
�

2
666666664

Pmax

(u1)max

...

(un)max

3
777777775

for i = 0; � � � ;m� 1
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Example VI : Heavy oil fractionator (all of the above)

� y7 must be kept above Tmin.

� y1 and y2 is to be kept at setpoint(measurements delayed).

� BRD must be minimized to maximize the heat recovery.

T

T

T

FC

A

FC

A

T

LC

PC

T

Upper reflux duty

Intermediate reflux duty  

Bottoms reflux
duty Side draw

BottomsFeed

reflux drum

stri-
pper

Top draw

FC
LC
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Classical Solution:

Not clear

� how to use temperature measurements to �ght the e�ect of delays, un-

reliability, etc. of analyzers.

� how to accommodate the optimization requirement.

MPC Solution :

Heavy-Oil
Fractionator

y1
y2
y3

y6
y7

w1
w2

u1

u2

u3

comps.

temps.

min
�Uk

pX
l=1



2
66664
y1

y2

u3

3
77775
k+ljk

�

2
66664
y1

y2

u3

3
77775
ref



2

Q

+
mX
i=1



2
66664
�u1

�u2

�u3

3
77775
k+ijk



2

R

y7 � Tmin

plus other input constraints.
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Example VII : Tennessee Eastman process(supervisory control re-

quirements)

PTLT

SC

CWS

CWR

TI

CWR

TI

PI

CWS

REACTOR

CONDENSER

COMPRESSOR

PI

TI

LT PI

TI

STM

COND

PI
LT

PI

LOOP #2

LOOP #1

LOOP #3

LOOP #4

PI

A
N
A
L
Y
Z
E
R

XD

XE

XF

XH

STRIPPER

VAP/LIQ
SEPARATOR

A
N
A
L
Y
Z
E
R

XA

XB

XC

XD

XE

XF

XH

PI

PI

PI

PI

A
N
A
L
Y
Z
E
R

XA

XB

XC

XD

XE

XF

Tier Loop # Controlled Variables Manipulated Variables

1 Reactor Level Compressor recycle valve

I 2 Separator Level Separator liquid ow

3 Stripper Level Stripper liquid ow

4 Reactor Pressure Reactor cooling water ow

min
�Uk

pX
l=1



2
64 Q

G=H

3
75
k+ljk

�

2
64 r1
r2

3
75
k+ljk



2

Q

+
m�1X
i=0

�uk+ijk
2
R

Pr � (Pr)max

(Hr)min � Hr � (Hr)max

where
Pr: reactor pressure, (Pr)s: setpoint to reactor pressure loop
Hr: reactor level, (Hr)s: setpoint to reactor level loop
Q: total product ow G=H: mass ratio between products G and H
FD: D feed ow FE: E feed ow
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1.3.2 SUMMARY

Advantages of MPC over Traditional APC

� control of processes with complex dynamics

� decoupling and feedforward control are \built in" (traditional approaches

are di�cult for systems larger than 2 � 2).

� constraint handling

� utilizing degrees of freedom

� consistent methodology

� realized bene�ts: higher on-line times and cheaper implementation /

maintenance

24
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1.4 INDUSTRIAL USE OF MPC: OVERVIEW

1.4.1 MOTIVATION

Pro�tability potential with multivariable control

� reduce variability of key variables by 50 % or more.

� increase yield of more valuable products,

25
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Bene�ts of control and optimization
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MPC within plant automation hierarchy
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0
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Control

Real-time
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Bene�ts of control and optimization

1.4.2 SURVEY OF MPC USE

Current status of MPC application(North America/Europe)

Applications by �ve major MPC vendors (Badgewell, 1996)

Area DMC Coop. Setpoint Inc. Honeywell Adersa Treiber Total

Pro�matics Controls

Re�ning 360 320 290 280 250 1500

Petrochemicals 210 40 40 - - 290

Chemicals 10 20 10 3 150 193

Pulp and Paper 10 - 30 - 5 45

Gas - - 5 - - 5

Utility - - 2 - - 2

Air Separation - - - - 5 5

Mining/Metallurgy - 2 - 7 6 15

Food Processing - - - 41 - 41

Furnaces - - - 42 - 42

Aerospace/Defence - - - 13 - 13

Automotive - - - 7 - 7

Other 10 20 - 45 - 75

Total 600 402 377 438 416 2233

First App DMC:1985 IDCOM-M:1987 PCT:1984 IDCOM:1973 OPC:1987

SMCA:1993 RMPCT:1991 HIECON:1986

Largest App 603�283 35�28 28 �20 - 24�19
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Current status of MPC application(Japan):

1.5 HISTORICAL PERSPECTIVE

� The idea of using a model for prediction and optimal control computation

has been around for long time.
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Note that research on optimal control was most vigorous in the 50s and

60s. Most of the results during this period were for open-loop optimal

control. For feedback implementation, they hinted the idea of receding

horizon control. However, most of the results were impractical due to

the lack of implementation hardware.

Some remarkable results of this period include

{ Pontryagin's maximum principle.

{ Hamilton-Jacobi-Bellman equation for optimal feedback control.

{ Feldbaum's dual control concept.

� Due to the lack of sophisticated hardware, it was highly desirable to de-

rive a closed-form control law that could be implemented with compu-

tational equipments available at reasonable costs. The work of Kalman

represents a major achievement in this regard.

Kalman derived analytical solutions to

{ linear quadratic optimal control problem for deterministic systems

) (1-horizon) LQR

{ the same problem for Gaussian stochastic systems ) LQG = LQR

+ Kalman �lter

These solutions were important because they represented very few ana-

lytial solutions to optimal feedback control problems.

However his work (based on the idea of stage-wise solution using dynamic

programming) could not be extended to constrained systems or nonlinear

systems.

� In the 70's, Kwon and Pearson discussed the idea of receding horizon

control (a cornerstone of MPC) in the context of LQ optimal control

and how to achieve stability with such a control law.

However, they did not consider constrained / nonlinear problems and

failed to motivate the need for such an approximation.
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� In the late 70s and early 80s, there were several reports of successful use

of optimal control concepts in oil industries. For instance, Charlie Cut-

ler reported the success of implementing the so-called Dynamic Matrix

Control in Shell Oil re�ning units.

This started an avalanch of similar algorithms and industrial projects.

From here on, process control would never be the same.

� The industrial success renewed the academics' enthusiasm for optimal

control. Prototypical algorithms were analyzed and improved. Also,

connections to the Kalman's work and other optimal control theories

were brought forth.

� Now, MPC is an essential tool-of-trade for process control engineers.

There are more than a dozen vendors o�ering commercial software pack-

ages and engineering services. There is probably not a single major oil

industry where MPC is not employed in its new instaillations or revamps.

MPC is also very well understood from a theoretical standpoint.

1.6 CHALLENGES

1.6.1 MODELING & IDENTIFICATION
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� most models for MPC design came from identi�cation rater than funda-

mental modeling.

� system ID takes up to 80-90% of the cost and time in a typical imple-

mentation of a model based controller.
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Current Practice
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� Example illustrating the di�culty in multivariable system identi�cation

True plant(Model A)

1

10s+ 1

2
64 0:878 �0:864

1:086 �1:092

3
75

Model B

1

10s+ 1

2
64 0:867 �0:875

1:095 �1:083

3
75

Model C

1

10s+ 1

2
64 0:808 �0:804

1:006 �1:025

3
75

37
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1.6.2 INCORPORATION OF STATISTICAL CONCEPTS

� Improved Disturbance Rejection:

One can capture the temporal / spatial correlations of disturbance e�ects

in the form of statistical models, using historical data, and use them for

better prediction / control.

� Inferential Control of Composition / Quality Variables

Many quality variables (e.q., variables directly related to end-use prop-

erty) and compositions are not on-line measurable or di�cult to measure

on-line. Delays and large sample time involved in the laboratory anal-

ysis can make tight control impossible. In this case, correlations with

other more easily measurable variables can be captured and utilized for

inferencing.

� Control System Performance Monitoring / Failure Diagnosis

The concept of Statistical Process Control (SPC) can be used to detect

unusual behavior and also diagnose the cause of performance deteriora-

tion of MPC.

41



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

Motivational Example: Batch Pulp Digester

On-line
measurements

On-line
prediction

Model

process controller
input

u

qy
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Key Aspects of the Problem

� Frequent Batch-to-Batch Variations in Operating Conditions

- Feed conditions

- Process parameters

! heat transfer coe�cients

! reaction rate parameters

� Lack of On-Line Quality Measurements

- Prohibits real-time feedback control
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Traditional Control Method: Statistical Quality Control

� SPC Based on On-Line Measurements
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Inferential Prediction and Control of Product Quality

On-line
measurements

On-line
prediction

Model

process controller
input

u

qy
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1.6.3 NONLINEAR CONTROL

Linear model-based control can be inadequate for

� highly nonlinear processes (reactors, high-purity distillation column, batch

processes, etc)

� process with large operating windows

MPC is a promising approach, but di�culties are in

� obtaining models (esp. through identi�cation)

� computational complexity (NLP must be solved on-line)

� lack of theoretical understanding on the stability and robustness.
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1.6.4 OTHER ISSUES

� control system maintenance

� integration with on-line optimization

� discrete-event systems, hybrid systems(e.q., start up)
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Chapter 2

DYNAMIC MATRIX CONTROL

Dynamic Matrix Control

� Proposed by C. Cutler at Shell (later became the President of DMCC).

� Based on a system representation using step response coe�cients.

� Currently being marketed by AspenTech (in the name of DMC-Plus).

� Prototypical of commercial MPC algorithms used in the process

industries.

We will discuss the core features of the algorithm. There may be some

di�erences in details.

2.1 FINITE IMPULSE AND STEP RESPONSE

MODEL

2.1.1 OVERVIEW OF COMPUTER CONTROL

Computer Control System
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PLANT

SAMPLERHOLD

CONTROL
ALGORITHM

1   2  3  4  .  .   .

Input Sequence Output Sequence

1  2  3  4  5  6

Model for Computer Control

Should provide the following relation:

fv(0); v(1); v(2); � � � ; v(1)g model! fy(1); y(2); � � � ; y(1)g
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We will concentrate on linear models. v and y are deviation variables, i.e.,

steady state is de�ned as

v
0

(k) = 0 8k ! y
0

(0) = 0 8k

2.1.2 IMPULSE RESPONSE AND IMPULSE RESPONSE

MODEL

Impulse Response

PLANT

Assumptions:

- H0 = 0: no immediate e�ect of impulse response

- 9 n s.t.Hn+1 = Hn+2 = � � � = 0: \Finite Impulse Response"

(reasonable for stable processes).

Examples:

FC
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Finte Impulse Response Model

Superposition means =) \Response adds and scales."

PLANT

PLANT

PLANT

               ?

Using the superposition described above,

y(k) = H1v(k � 1) +H2v(k � 2) + � � � � � �+Hnv(k � n)
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v(k-1) δ(k-1)

H1V(K-1)

+

+ k

kk-n
v(k-n) δ(k-n)

H
N
V(K-N)

+

+

v(k-2)

v(k-1)

kk-n

y(k)

==

NOTE: need to have n-past inputs (v(k � 1); � � � ; v(k � n)) in the memory.

2.1.3 STEP RESPONSE AND STEP RESPONSE MODEL

Step Response

PLANT

Assumptions:

- S0 = 0: no immediate e�ect of step input

- Sn+1 = Sn+2 = � � � = S1: equivalent \Finite Impulse Response"
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(reasonable for stable processes)

Relation between Impulse Response and Step Response:

Sk =
kX
i=1

Hiv(k � i)

where v(k � i) = 1 for 1 � i � k. Hence,

Sk =
Pk
i=1Hi

Hk = Sk � Sk�1

Truncated Step Response Model

1

2

1

1

2

1

∆υ(0) ∆υ(1)
1

1

1 2

−
3

2

∆υ(2)

υ

As shown above, any z.o.h. signal v(t) can be represented as a sum of steps:

v(t) =
1X
i=0

�v(i)S(t� i)

where �v(i) = v(i)� v(i� 1) and S(t� i) is a unit step starting at the ith

time step.

Using this and superposition,

y(k) = S1�v(k � 1) + S2�v(k � 2) + � � � � � �

+Sn (�v(k � n) + �v(k � n� 1) + � � �+�v(0))| {z }
v(k�n)
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More compactly,

y(k) =
n�1X
i=1

Si�v(k � i) + Snv(k � n)

v(k-2)

v(k-1)

kk-n

y(k)

==

k-1

+

+
S1∆v(k-1)

∆v(k-1)

k-n+1

∆v(k-n+1)

k-n

v(k-n)
Snv(k-n)

+

+

+ +

Note:

1. �v(k � i) instead of v(k � i) appears in the model.

2. v(k� n);�v(k� n+1); : : : ;�v(k� 2);�v(k� 1) must be stored in the

memory (Same storage requirement as in the FIR model).
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2.2 MULTI-STEP PREDICTION

2.2.1 OVERVIEW

� In control, we are often interested in describing the future output

behavior with a model.

� For a dynamic system, future output behavior depends on both past

and future inputs.

past  input  trajectory

hypothesized  future  input
trajectory

futurepast

"Dynamic
states"
X(k) :

memory of
past

PREDICTOR

futurepast

Predicted future output

Hence, past inputs must be remembered in some form for prediction.

Dynamic states (in an input / output description) are de�ned as

memory about the past inputs needed for prediction of the

future output behavior

For a same system, states can be de�ned in many di�erent ways, i.e., there

are many ways to remember the past for the purpose of future prediction).

- For instance, states can consist of the entire past input trajectory:

x(k) = [v(k � 1); v(k � 2); : : : : : : ; v(0)]T
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This choice is not practical since the memory size keeps growing with

time.

- For an FIR system, one only has to keep n past inputs (Why?) :

x(k) = [v(k � 1); v(k � 2); : : : : : : ; v(k � n)]T

With this choice of x(k), we can certainly build the prediction of the

future output behavior.

- Since the ultimate purpose of the memory is to predict future output, the

past may be more conveniently tracked in terms of its e�ect on the

future rather than the past itself. This is discussed next.

2.2.2 RECURSIVE MULTI-STEP PREDICTION FOR AN FIR

SYSTEM

� Separating Past and Future Input E�ects

For linear systems, due to the separation principle, the e�ect of past

and (hypothesized) future inputs can be computed separately and

added:

past  input  trajectory

hypothesized  future  input  trajectory

futurepast

+

=

+

=

futurepast futurepast

Y0(k)
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� Past E�ects As Memory

De�ne Y 0(k) as future output deviation due to past input deviation:

Y 0(k) = [y0(k=k); y0(k + 1=k); : : : : : : ; y0(1=k)]T

where

y0(i=k) �= y(i) assuming v(k + j) = 0 for j � 0

Note that

y0(k=k) = y(k)

since the assumption of v(k + j) = 0; j � 0 does not a�ect the output

at time k.

Although Y 0(k) is in�nite dimensional, for FIR system, we only have

to keep n terms (why?):

Y 0(k) = [y0(k=k); y0(k + 1=k); : : : : : : ; y0(n=k)]T

This vector can be chosen as states since it describes the e�ect of past

input deviation on future output deviation.
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Future output can be written as
2
6666666666664

y(k + 1)

y(k + 2)
...
...

y(k + p)

3
7777777777775

=

2
6666666666664

y0(k + 1=k)

y0(k + 2=k)
...
...

y0(k + p=k)

3
7777777777775

| {z }
E�ect of Past Inputs From Y 0(k)

+

2
6666666666664

H1

H2
...
...

Hp

3
7777777777775
v(k) +

2
6666666666664

0

H1
...
...

Hp�1

3
7777777777775
v(k + 1) + : : : : : :+

2
6666666666664

0

0
...
...

H1

3
7777777777775
v(k + p� 1)

| {z }
E�ect of Hypothesized Future Inputs

We can see that such a de�tion of states can be very convenient for

predictive control.

� Recursive Update of Memory

Memory should be updated from one time step to next. For computer

implementation, the update should occur in a recursive manner.

current  memory

Y0(k)

υ (k)

new input

update Y0(k+1)

Y 0(k) can be updated recursively as follows:
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Y 0(k) ! M0Y 0(k) + Hv(k) = Y 0(k + 1)2
6666666666666664

y0(k=k)

y0(k + 1=k)
...
...

y0(k + n� 2=k)

y0(k + n� 1=k)

3
7777777777777775

0
...

2
6666666666666664

y0(k + 1=k)

y0(k + 2=k)
...
...

y0(k + n� 1=k)

y0(k + n=k)

3
7777777777777775

+

2
6666666666666664

H1

H2
...
...

Hn�1

Hn

3
7777777777777775

v(k) =

2
6666666666666664

y0(k + 1=k + 1)

y0(k + 2=k + 1)
...
...

y0(k + n� 1=k + 1)

y0(k + n=k + 1)

3
7777777777777775

v

v

v

y

y

y

 k+n-1   k+n   k+n+1k    k+1   k+2k-1    k    k+1   k+2

k+n-1   k+n

υ(k)

Y0(k)

M 0Y(k)

H υ(k)

k-1    k    k+1   k+2

k-1    k    k+1   k+2

k    k+1   k+2

k    k+1   k+2  k+n-1   k+n   k+n+1
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Mathematically, the above can be represented as

Y 0(k + 1) =

2
6666666666664

0 1 0 � � � 0

0 0 1 � � � 0
...

...
... . . . ...

0 0 0 � � � 1

0 0 0 � � � 0

3
7777777777775

| {z }
M0

Y 0(k) +

2
6666666666664

H1

H2
...

Hn�1

Hn

3
7777777777775
v(k)

Note that multiplication by M0 in the above represents the shift

operation (which can be e�ciently implemented on a computer).

2.2.3 RECURSIVE MULTI-STEP PREDICTION FOR AN FIR

SYSTEM WITH DIFFERENCED INPUT

Multi-step prediction model can be developed in terms of step response

coe�cients as well.

� Separating Past and Future Input E�ects

Apply the superposition as before, but in a slightly di�erent manner:
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past  input  trajectory

hypothesized  future  input  trajectory

+

=

+

=

futurepast futurepast

k+n-1

~
( )Y k

� Past E�ects As Memory

De�ne ~Y (k) as future output deviation due to past input deviation plus

current bias:

~Y (k) = [~y(k=k); ~y(k + 1=k); : : : : : : ; ~y(k + n� 1=k)]T

where

~y(i=k) �= y(i) assuming �v(k + j) = 0 for j � 0

Note that ~y(k + n� 1=k) = ~y(k + n=k) = : : : = ~y(1=k), thus allowing

the �nite-dimensional representation of future output trajectory. This

vector can be chosen as states.
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Future output can be written as
2
6666666666664

y(k + 1)

y(k + 2)
...
...

y(k + p)

3
7777777777775

=

2
6666666666664

~y(k + 1=k)

~y(k + 2=k)
...
...

~y(k + p=k)

3
7777777777775

| {z }
E�ect of Past Inputs + Current Bias (from ~Y (k))

+

2
6666666666664

S1

S2
...
...

Sp

3
7777777777775
�v(k) +

2
6666666666664

0

S1
...
...

Sp�1

3
7777777777775
�v(k + 1) + : : :+

2
6666666666664

0

0
...
...

S1

3
7777777777775
�v(k + p� 1)

| {z }
E�ect of Hypothesized Future Input Changes

We can see that such a de�tion of states can be very convenient for

predictive control.

� Recursive Update of Memory
~Y (k) can be updated recursively as follows:

~Y (k) M ~Y (k) + S�v(k) = ~Y (k + 1)2
6666666666666664

~y(k=k)

~y(k + 1=k)
...
...

~y(k + n� 2=k)

~y(k + n� 1=k)

3
7777777777777775

~y(k + n=k)
...

2
6666666666666664

~y(k + 1=k)

~y(k + 2=k)
...
...

~y(k + n� 1=k)

~y(k + n=k)

3
7777777777777775

+

2
6666666666666664

S1

S2
...
...

Sn�1

Sn

3
7777777777777775

�v(k) =

2
6666666666666664

~y(k + 1=k + 1)

~y(k + 2=k + 1)
...
...

~y(k + n� 1=k + 1)

~y(k + n=k + 1)

3
7777777777777775
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v

v

v

y

y

y

k-1    k    k+1   k+2 k    k+1   k+2   k+3 k+n-1   k+n

∆υ (k ) ~
( )Y k 1+

M Y k
~

( )

∆υ (k )

S∆υ (k )

k-1    k    k+1   k+2

k-1    k    k+1   k+2

k    k+1   k+2   k+3

k    k+1   k+2   k+3

k+n-1   k+n

k+n-1   k+n

Hence,

~Y (k + 1) =

2
6666666666664

0 1 0 � � � 0

0 0 1 � � � 0
...

...
... . . . ...

0 0 0 � � � 1

0 0 0 � � � 1

3
7777777777775

| {z }
M

~Y (k) +

2
6666666666664

S1

S2
...

Sn�1

Sn

3
7777777777775
�v(k)

Note that multiplication by M in the above represents a shift

operation of di�erent kind (the last element is repeated).
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2.2.4 MULTIVARIABLE GENERALIZATION

Si
�= ith step response coe�cient matrix

=

2
64 S1;1;i S1;2;i

S2;1;i S2;2;i

3
75

In general

Si =

2
6666666666664

S1;1;i S1;2;i � � � � � � S1;nv;i

S2;1;i
... . . . . . . ...

...
... . . . . . . ...

...
... . . . . . . ...

Sny;1;i Sny;2;i � � � � � � Sny;nv;i

3
7777777777775
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Again, de�ne ~Yk+1 and ~Yk in the same manner as before (now they are

(n � ny)-dimensional vectors). Then,

~Y (k + 1) =M ~Y (k) + S�v(k)

where

M =

2
6666666666664

0 I 0 � � � 0

0 0 I � � � 0
...

...
... . . . ...

0 0 0 � � � I

0 0 0 � � � I

3
7777777777775

S =

2
6666666666664

S1

S2
...

Sn�1

Sn

3
7777777777775

where I is an ny � ny indentity matrix. Again, it merely represents the

shift-operation; such a matrix does not need to be created in reality.

2.3 DYNAMIC MATRIX CONTROL ALGORITHM

2.3.1 MAJOR CONSTITUENTS
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k k+1 k+m k+p

past future
target

projected 
outputs

inputs

horizon
� Memory: stores the e�ect of past inputs on future outputs.

� Predictor: combines information stored in the memory with model

information to predict the e�ect of hypothesized future input

adjustments on future outputs.

(y(k+1jk); y(k+2jk); : : : ; y(k+pjk)) = f (I(k); (�u(k); : : : ;�u(k +m� 1)))

where I(k) denotes the all the available information at k (stored in the

memory).

� Objective function and constraints

� Optimization program

User-chosen parameters are the prediction horizon, control horizon, and

parameters in the objective function and constraints.

2.3.2 BASIC PROBLEM SETUP

The basic system description we assume is
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+

+

u : manpulated variable

d : measured / modelled disturbance

wy : unmeasured disturbance + model / bias error e�ect

2.3.3 DEFINITION AND UPDATE OF MEMORY

De�ne the memory (state vector) as the e�ect of past deviation + current

bias of known inputs (u and d) on the future output behavior:

~Y (k) =

2
666666664

y(k)

y(k + 1)
...

y(k + n� 1)

3
777777775

with

�u(k) = �u(k + 1) = � � � � � � = 0

�d(k) = �d(k + 1) = � � � � � � = 0

wy(k) = wy(k + 1) = � � � � � � = 0

The memory update simply consists of:

M ~Y (k � 1) +
�
Su Sd

�
�v(k�1)z }| {2

64 �u(k � 1)

�d(k � 1)

3
75 ! ~Y (k)
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2.3.4 PREDICTION EQUATION

We can develop the prediction based on ~Y (k) in the following manner

(y(k + `jk) denotes y(k + `) predicted at t = k):
2
6666666666664

y(k + 1jk)

y(k + 2jk)
...
...

y(k + pjk)

3
7777777777775

=

2
6666666666664

~y(k + 1=k)

~y(k + 2=k)
...
...

~y(k + p=k)

3
7777777777775

| {z }

y(k+1);���;y(k+p) with

�u(k) = �u(k + 1) = � � � � � � = 0

�d(k) = �d(k + 1) = � � � � � � = 0

wy(k) = wy(k + 1) = � � � � � � = 0

+

2
6666666666664

Su
1

Su
2
...
...

Su
p

3
7777777777775
�u(kjk) +

2
6666666666664

0

Su
1

Su
2
...

Su
p�1

3
7777777777775
�u(k + 1jk) + � � �+

2
6666666666664

0

0
...

0

Su
1

3
7777777777775
�u(k + p� 1jk)

+

2
6666666666664

Sd
1

Sd
2
...
...

Sd
p

3
7777777777775
�d(k) +

2
6666666666664

0

Sd
1

Sd
2
...

Sd
p�1

3
7777777777775
�d(k + 1jk) + � � �+

2
6666666666664

0

0
...

0

Sd
1

3
7777777777775
�d(k + p� 1jk)

+

2
6666666666664

w(k + 1jk)

w(k + 2jk)
...
...

w(k + pjk)

3
7777777777775

There are more than a few terms (marked with (�jk)) on the right-hand side
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that are unavailabe at time k.

� Assume piece-wise constant disturbances, i.e.,

�d(k + 1jk) = �d(k + 2jk) = � � � � � � = 0

� Assume the e�ect of unmeasured disturbance, model error, etc. are

described as a piece-wise constant signal.

wy(k+1jk) = wy(k+2jk) = � � � � � � = wy(kjk) � y(k)| {z }
real meas:

� ~y(k=k)| {z }
model prediction

� For exibility in adjusting the computational load, consider only m

(� p) input moves (�u(kjk);�u(k+ 1jk); � � � ;�u(k +m� 1jk)). This

means, in your prediction, assume

�u(k +mjk) = �u(k +m� 1jk) = � � � = � � � = �u(k + p� 1jk) = 0
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In summary,

Yk+1jk =

2
6666666666664

~y(k + 1=k)

~y(k + 2=k)
...
...

~y(k + p=k)

3
7777777777775

| {z }
Mp

~Y (k)

from

memory

+

2
6666666666664

Sd
1

Sd
2
...
...

Sd
n

3
7777777777775
�d(k)

| {z }
Sd�d(k)

feedforward

term

+

2
6666666666664

y(k)� ~y(k=k)

y(k)� ~y(k=k)
...
...

y(k)� ~y(k=k)

3
7777777777775

| {z }
Ip(y(k)� ~y(k=k))

feedback

term

+

2
6666666666666664

Su
1 0 � � � � � � 0

Su
2 Su

1 0 � � � 0
...

... . . . . . . ...

Su
m Su

m�1 � � � � � � Su
1

... . . . . . . . . . ...

Su
p Su

p�1 � � � � � � Su
p�m+1

3
7777777777777775

| {z }
Su

dynamic

matrix

2
6666666666664

�u(kjk)

�u(k + 1jk)
...
...

�u(k +m� 1jk)

3
7777777777775

| {z }
�U(k)

future

input

moves

NOTE: More complex (dynamic) extrapolation of the feedback errors is

possible. For instance, for ramp disturbances, use

�d(k) = �d(k + 1jk) = � � � � � � = �d(k + p� 1jk)

wy(k + `jk) = wy(kjk) + `(wy(kjk)� wy(k � 1jk � 1))
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k-1 k k+1 k+2

k-1 k k+1 k+2

∆d(k)
∆d(k+1)

∆d(k+2)

w(k)-w(k-1)

2.3.5 QUADRATIC CRITERION

min�u(jjk) [V (k)
�=

Pp
j=1(r(k + ijk)� y(k + ijk))TQ(r(k + ijk)� y(k + ijk))

+
Pm�1
`=0 �uT (k + `jk)R�u(k + `jk)

i

Q and R are weighting matrices; they are typically chosen as diagonal

matrices.
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Note that the objective function can be rewritten as

V (k) =

2
666666664

r(k + 1jk)� y(k + 1jk)

r(k + 2jk)� y(k + 2jk)
...

r(k + pjk)� y(k + pjk)

3
777777775

T 2
666666664

Q

Q
. . .

Q

3
777777775

2
666666664

r(k + 1jk)� y(k + 1jk)

r(k + 2jk)� y(k + 2jk)
...

r(k + pjk)� y(k + pjk)

3
777777775

+

2
666666664

�u(kjk)

�u(k + 1jk)
...

�u(k +m� 1jk)

3
777777775

T 2
666666664

R

R
. . .

R

3
777777775

2
666666664

�u(kjk)

�u(k + 1jk)
...

�u(k +m� 1jk)

3
777777775

+

V (k) = (R(k+1jk)�Y(k+1jk))T �Q(R(k+1jk)�Y(k+1jk))+�UT(k) �R�U(k)

where

R(k + 1jk) =

2
6666666666664

r(k + 1jk)

r(k + 2jk)
...
...

r(k + pjk)

3
7777777777775
; Y(k + 1jk) =

2
6666666666664

y(k + 1jk)

y(k + 2jk)
...
...

y(k + pjk)

3
7777777777775

and

�Q = blockdiag[Q; Q; : : : ; : : : ; Q]; �R = blockdiag[R; R; : : : ; : : : ; R]

Note that

Y(k + 1jk) =Mp
~Y (k) + Sd�d(k) + Ip (y(k)� ~y(k=k))| {z }

known term

+SU�U(k)

Hence, V (k) is a quadratic function of �U(k).
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2.3.6 CONSTRAINTS

Constraints include

� Input magnitude constraints

� Input rate constraints

� Output magnitude constraints

At t = k, one has

futurepast

target

y
max

u
max

k k+1 k+m-1 k+p

horizon

projected output

inputs

umin � u(k + `jk) � umax

j�u(k + `jk)j � �umax; ` = 0; � � � ;m� 1

ymin � y(k + jjk) � ymax; j = 1; � � � ; p

We want to express the above constraints as a linear inequalty in the form of

CU�U(k) � C(k)
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Manipulated Input Magnitude Constraints

umin � u(k + `jk) � umax; ` = 0; � � � ;m� 1

+

u(k+`jk)z }| {
u(k � 1) +

X̀
i=0

�u(k + ijk) � umin

�u(k � 1)�
X̀
i=0

�u(k + ijk)
| {z }

�u(k+`jk)

� �umax

+

2
666666666666666666666664

2
666666664

I 0 � � � 0

I I 0
...

...
... . . . 0

I I � � � I

3
777777775

�

2
666666664

I 0 � � � 0

I I 0
...

...
... . . . 0

I I � � � I

3
777777775

3
777777777777777777777775

2
666666664

�u(kjk)

�u(k + 1jk)
...

�u(k +m� 1jk)

3
777777775
�

2
666666666666666666666664

2
666666664

umin � u(k � 1)

umin � u(k � 1)
...

umin � u(k � 1)

3
777777775

�

2
666666664

umax � u(k � 1)

umax � u(k � 1)
...

umax � u(k � 1)

3
777777775

3
777777777777777777777775

+

2
64 IL

�IL

3
75�U(k) �

2
66666666666666664

2
666664
umin � u(k � 1)

...

umin � u(k � 1)

3
777775

�

2
666664
umax � u(k � 1)

...

umax � u(k � 1)

3
777775

3
77777777777777775
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Manipulated Variable Rate Cosntraints

j�u(k + `jk)j � �umax; ` = 0; � � � ;m� 1

+

��umax � �u(k + `jk) � �umax

+

�u(k + `jk) � ��umax

��u(k + `jk) � ��umax

+

2
666666666666666666666664

2
666666664

I 0 � � � 0

0 I 0
...

... � � � . . . 0

0 0 � � � I

3
777777775

�

2
666666664

I 0 � � � 0

0 I 0
...

... � � � . . . 0

0 0 � � � I

3
777777775

3
777777777777777777777775

2
666666664

�u(kjk)

�u(k + 1jk)
...

�u(k +m� 1jk)

3
777777775
�

2
666666666666666666666664

�

2
666666664

�umax

�umax
...

�umax

3
777777775

�

2
666666664

�umax

�umax
...

�umax

3
777777775

3
777777777777777777777775

+

2
64 I

�I

3
75�U(k) �

2
66666666666666664

�

2
666664
�umax

...

�umax

3
777775

�

2
666664
�umax

...

�umax

3
777775

3
77777777777777775
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Output Magnitude Constraints

ymin � y(k + jjk) � ymax; j = 1; � � � ; p

+

y(k + jjk) � ymin

�y(k + jjk) � �ymax

+

2
64 Mp

~Y (k) + Sd�d(k) + Ip(y(k)� ~y(k=k)) + SU�U(k)

�Mp
~Y (k)� Sd�d(k)� Ip(y(k)� ~y(k=k))� SU�U(k)

3
75 �

2
64 Ymin

�Ymax

3
75

where

Ymin =

2
666666664

ymin

ymin
...

ymin

3
777777775

Ymax =

2
666666664

ymax

ymax
...

ymax

3
777777775

since

Y(k+1jk) �=

2
666664
y(k + 1jk)

...

y(k + pjk)

3
777775 =Mp

~Y (k)+Sd�d(k)+Ip(y(k)�~y(k=k))+S
U�U(k)

+

2
64 SU

�SU

3
75�U(k) �

2
64 Ymin �Mp

~Y (k)� Sd�d(k)� Ip(y(k)� ~y(k=k))

�Ymax +Mp
~Y (k) + Sd�d(k) + Ip(y(k)� ~y(k=k))

3
75
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In summary, we have

2
6666666666666664

IL

�IL

I

�I

SU

�SU

3
7777777777777775

�U(k) �

2
6666666666666666666666666666666666666666666664

2
666664
umin � u(k � 1)

...

umin � u(k � 1)

3
777775

�

2
666664
umax � u(k � 1)

...

umax � u(k � 1)

3
777775

�

2
666664
�umax

...

�umax

3
777775

�

2
666664
�umax

...

�umax

3
777775

2
64 Ymin �Mp

~Y (k)� Sd�d(k)� Ip(y(k)� ~y(k=k))

�Ymax +Mp
~Y (k) + Sd�d(k) + Ip(y(k)� ~y(k=k))

3
75

3
7777777777777777777777777777777777777777777775

The above is in the form of linear equality,

CU�U(k) � C(k)

Note that CU is a constant matrix while C(k) must be updated at each time

step.

Although not treated here, time-varying constraints can easily be

incorporated into the formulation.

2.3.7 QUADRATIC PROGRAMMING

Problem:
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At each sample time, we have a minimization with an objective function

V (k) = (R(k+1jk)�Y(k+1jk))T �Q(R(k+1jk)�Y(k+1jk))+�UT(k) �R�U(k)

with the prediction equation constraint

Y(k + 1jk) =Mp
~Y (k) + Sd�d(k) + Ip (y(k)� ~y(k=k)) + SU�U(k)

and the inequality constraint

CU�U(k) � C(k)

Putting Into the Standard QP Form:

Substituting the prediction equation constraint into the objective gives

V (k) = ET (k) �QE(k)� 2ET (k) �QSU| {z }
GT (k)

�U(k) + �UT (k)
�
SUT �QSU + �R

�
| {z }

H

�U(k)

E(k) = R(k + 1jk)�Mp
~Y (k)� Sd�d(k)� Ip (y(k)� ~y(k=k))

Note that E(k) can be computed with information given to us at time k.

Hence, V (k) is a quadratic function of �U(k) with hessian matrix H and

gradient vector G(k).

Since we have a minimization of a quadratic objective with a linear

inequality constraint, we have a quadratic programming (QP). The

standard form of quadratic programming is

minx x
THxT � gTx

Cx � c

The parameters that should be supplied to the QP solver are H; g; C and c.

80



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

In our case, at t = k,

x : �U(k)

H : H �= (SU)T �QSU + �R

g : G(k) �= 2(SU)T �Q(Mp
~Y (k) + Sd�d(k) + Ip(y(k)� ~y(k=k))�Rk+1jk)

C : Cu �=

2
6666666666666664

IL

�IL

I

�I

SU

�SU

3
7777777777777775

c : C(k) �=

2
6666666666666666666666666666666666666666666664

2
666664
umin � u(k � 1)

...

umin � u(k � 1)

3
777775

�

2
666664
umax � u(k � 1)

...

umax � u(k � 1)

3
777775

2
666664
�umax

...

�umax

3
777775

�

2
666664
�umax

...

�umax

3
777775

2
64 Ymin �Mp

~Y (k)� Sd�d(k)� Ip(y(k)� ~y(k=k))

�Ymax +Mp
~Y (k) + Sd�d(k) + Ip(y(k)� ~y(k=k))

3
75

3
7777777777777777777777777777777777777777777775

Following are some comments on quadratic programming.

� QP is convex and therefore fundamentally tractable.

� The solution doesn't necessarily lie at the vertices of feasible

region(unlike LPs). One may have any number of active constraints
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(up to the QP dimension).

� The size of QP is m� nu where m is the control input horizon and nu

is the number of input. Computational time of QP depends on many

things (e.g., Hessian size, its structure, number of constraints, the

proximity of the solution to the active constraints) and is di�cult to

predict.

� O�-the-shelf QP solver is available, but is often not the best choice in

terms of computational e�ciency. Because the hessian and gradient for

QP tends to be highly structured (sparse), an algorithm tailored to

take advantage of this is recommended.

� QP solver requires inversion of the hessian. Since the hessian is a

constant matrix (given �xed input / output weights and model

parameters), it only needs to be inverted once o�-line. This eliminates

the time-consuming step of inverting the hessian at each QP run. Only

when the weighting matrices are model parameters are changed,

hessian needs to be recomputed and inverted in the background.

� Since most QPs are feasible-path algorithms, the number of inequality

constraints also a�ect the computational time. One should use the

constraints sparingly.

� The most well-known solution strategy is the active set strategy. In

this method, �rst a feasible solution is found. Then, the least squares

problem is solved with the active constraints as equality constraints.

The optimality of the solution is checked through Kuhn-Tucker

conditions. If they are not satis�ed, the active constraint set is

updated and the procedure is repeated.

� Another emerging method is the interior point (IP) method. In the IP

method, a barrier function is used to trap the solution within the

feasible region. Newton interation is used to converge to the optimum.

This method has many attractive features like quick convergence (most
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problems converge with 5-50 iterations regardless of the problem size)

and ability exploit the problem structure.

2.3.8 SUMMARY OF REAL-TIME IMPLMENTATION

1. Initialization: Initialize the memory vector ~Y (0) and the reference

vector R(1j0). Set k = 1.

2. Memory Update:

~Y (k�1) ! M ~Y (k�1)+Su�u(k�1)+Sd�d(k�1) ! ~Y (k)

2
6666666666666664

~y(k � 1=k � 1)

~y(k=k � 1)
...
...

~y(k + n� 3=k � 1)

~y(k + n� 2=k � 1)

3
7777777777777775

~y(k + n� 1=k � 1)
...

2
6666666666666664

~y(k=k � 1)

~y(k + 1=k � 1)
...
...

~y(k + n� 2=k � 1)

~y(k + n� 1=k � 1)

3
7777777777777775

+

2
6666666666666664

S1

S2
...
...

Sn�1

Sn

3
7777777777777775

�v(k�1) =

2
6666666666666664

~y(k=k)

~y(k + 1=k)
...
...

~y(k + n� 2=k)

~y(k + n� 1=k)

3
7777777777777775

3. Reference Vector Update: Update R(k + 1jk) by shifting R(kjk � 1)

and entering a new reference value.
2
6666666666666664

r(kjk � 1)

r(k + 1jk � 1)
...
...

r(k + p� 2jk � 1)

r(k + p� 1jk � 1)

3
7777777777777775

2
6666666666666664

r(k + 1jk)

r(k + 2jk)
...
...

r(k + p� 1jk)

r(k + pjk)

3
7777777777777775

4. Measurement Intake: Take in new measurement y(k) and �d(k).
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5. Calculation of the Gradient Vector and Constraint Vector:

~G(k) = 2(SU)T �Q(Mp
~Y (k) + Sd�d(k)+ Ip(y(k)� ~y(k=k))�R(k+1jk))

Update the constraint vector C(k) similarly.

6. Solve QP: Call the QP subroutine with pre-inverted H,CU and

computed G(k); C(k).

7. Implementation of input: Implement �u(kjk):

u(k) = u(k � 1) + �u(kjk)

8. Go back to Step 2 after setting k = k + 1.

2.4 ADDITIONAL ISSUES

2.4.1 FEASIBILITY ISSUE AND CONSTRAINT

RELAXATION

� Output constraints can become infeasible (impossible to satisfy). For

example, if we require �� � y(k + `jk) � � for all `, as �! 0, the

constraint becomes infeasible.

� When the QP is declared infeasible, one must relax the output

constraints. Various ways to relax the constraints exist:

{ Relax the constraint starting from the initial time one by one until

it is feasible.
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ymax

k k+H c

Relax the constraints between

k+1 and k+H c-1

{ Soften the constraint and penalize the degree of softening:

min�;�U(k)[Usual Objective] + ��2

ymin � � � y(k + `jk) � ymax + �

plus other constraints

2.4.2 GUIDELINES FOR CHOOSING THE HORIZON SIZE

In order to obtain good closed-loop properties and consistent tuning e�ect

from problem to problem, it is recommended to use a very large or

preferably in�nite prediction horizon (Long-sighted decision making

produces better results in general). 1-horizon DMC can be implemented in

the following way:

� choose m as large as possible (within the computational limit).

� choose

p = m+ n

where n is the number of time steps for step responses to settle.

� add constraint

y(k + pjk) = 0
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Note that the above choice of p with the equality constraint amounts to

choosing p =1. Stability of the closed-loop system is guaranteed under

this cuhoice (regardless of choice of m). Choice of m is not critical for

stability; a larger m should result in better performance at the expense of

increased computational requirement.

k+m-1

k+m-1 k+m+n-1
N time steps

The lesson is

� Use large enough horizon for system responses to settle.

� Try to penalize the endpoint error more (if not constrain to zero).

2.4.3 BI-LEVEL FORMULATION

In the DMC algorithm, control computation at each sample time is done in

two steps:

� Steady State Optimization: Here model prediction at steady state is

used to determine the optimal steady state. The steady-state model is
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in the form of

y(1jk) = Ks (u(1jk)� u(k � 1))| {z }
�us(k)

+b(k)

With only m moves considered,

�us(k) = �u(kjk) + �u(k + 1jk) + : : : : : :+�u(k +m� 1jk)

and with FIR assumption,

y(1jk) = y(k +m+ n� 1jk)

and Ks = Sn. Hence, the steady prediction equation can be easily

extracted from the dynamic prediciton equation we had earlier.

In terms of the optimization criterion, various choices are possible.

{ Most typically, some kind of linear economic criterion is used along

with constraints on the inputs and outputs:

min
�us(k)

[`(u(1jk); y(1jk))]

In this case, a linear programming (LP) results.

{ Sometimes, the objective is chosen to minimize the input move size

while satisfying various input / output constraints (posed by

control requirements, actuator limits plus those set by the rigorous

plant optimizer):

min
�us(k)

[j�us(k)j]

Again, an LP results.

{ In the pure regulation problems where setpoint for the output is

�xed, one may use

min
�us(k)

[(r � y(1jk))TQ(r � y(1jk))]
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This combined with subsequently discussed QP results in

In�nite-Horizon MPC.

� Dynamic Optimization: Once the steady-state target is �xed, the

following QP is solved to drive the outputs (and sometimes also inputs)

to their chosen targets quickly without violating constraints:

min�u(jjk)
hPm+n�2

i=1 (y(k + ijk)� y�(1jk))TQ(y(k + ijk)� y�(1jk))

+
Pm�1
j=0 �uT (k + jjk)R�u(k + jjk)

i

subject to

�u(kjk) + �u(k + 1jk) + : : : : : :+�u(k +m� 1jk) = �u�s(k)

plus various other constraints. This is a QP.

The last constraint forces y(k +m+ n� 1jk) to be at the optimal

steady-state value y�(k +1jk).

Note: The above steady-state optimization is to be distinguished from

the rigorous plant-wide optimization. The above is performed at every

sample time of MPC while the rigorous optimization is done much

more infrequently.
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2.4.4 PROPERTY ESTIMATION

� Property data q are usually obtained through on-line analyzer or lab.

analysis.

� Both have signi�cant delays and limited sampling capabilities (more so

for lab. analysis).

� On-line anayzers are highly unreliable (prone to failures).

� Using more reliable fast process measurments y (and possibly u), we

can estimate product properties at a higher frequency with a minimal

delay.

� The property estimator (sometimes called soft sensor) can be

constructed from a fundamental model or more commonly through

data regression.

� Almost all estimators used in practice today are designed as static

estimators.

� Since process variables exhibit di�erent response times, ad hoc dynamic

compensations (e.g., lead / lag elements, delays) are often added to the

static estimator.
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� If the number of process measurements is too large, the dimension can

be reduced through PCA(principal component analysis) or orther

correlation analyses.

� In some cases where nonlinearity is judged to be signi�cant, Arti�cial

Neural Networks are used for regression.

� Analyzer or lab results can be used to remove bias from the soft sensor.

Suppose the soft sensor takes the form of q̂s(p; i) = f(y(p; i)). Then,

q̂(p; i) = q̂s(p; i) + �(q(p; 0)� q̂s(p; 0))| {z }
bias correction

; 0 � � � 1
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2.4.5 SYSTEM DECOMPOSITION

In MIMO processes, some input-output pairs have no or only weak

coupling. Such systems can be decomposed into several subsystems and

separate MPC can be designed for each subsystem.

The decentralized MPC design can reduce computational demand and

improve numerical stability.

� Number of oating point computation in matrix algebra is proportional

to n2 or n3.

� If we can decompose an n-dimensional system into two subsystems

with equal size, the number of computation can be reduced from O(n2)

or O(n3) to O(n2=4) or O(n3=8).

� System decomposition is not a trivial task in general. It is one of the

continuing research issues studied under the title of Control Structure

Synthesis or Design of Decentralized Control.

� Some of the rather obvious cases are as follows:
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Case 1 : Complete Separation

� The system can be decomposed into (U1 U2 U4)� (Y1 Y2 Y4) and

U3 � Y3 disjoint pairs.
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Case 2 : Partial Separation I

� (Y1 Y2 Y4) is not a�ected by U3. But Y3 is a�ected by U4

� The system can be decomposed into two subsystems. In this case,

U4 can be treated as a measurable disturbance to the U3 � Y3 loop.
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Case 3 : Partial Separation II

� Y3 is not inuenced by (U1 U2 U4). But, U3 has an inuence on Y4.

� Similarly to above, the problem can be decomposed into two

subproblems. U3 acts as a measurable disturbance to the �rst

block.
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Case 4 : Partial Separation III

� If G34 and G43 have slower dynamics and smaller steady state

gains than the other transfer functions, we may decompose the

system as shown in the �gure.
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Example: Extrusion Process This example shows how the feedforward

control can be constructed in a real process situation.
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According to the input-output map, uj � yj pair is decoupled from

others while uj�1 plays a measurable disturbance to yj.

Instead of treating uj�1 as a measured disturbance, however, it is

better to take yj�1 as the measured disturbance and compensate its

e�ect through the feedforward loop.

Decentralization Options

� Decentralization for both model update and optimization.

� Full model update, but decentralized optimization.

� Full model update, full steady-state optimization (LP), but

decentralized dynamic optimization (QP).
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2.4.6 MODEL CONDITIONING

Ill-Conditioned Process ?

� Consider the following process:

2
64 y1
y2

3
75 =

2
64 2 4

3 6

3
75
2
64 u1
u2

3
75 =

2
64 2

3

3
75u1 +

2
64 4

6

3
75u2 =

2
64 2

3

3
75 (u1 + 2u2)

Two column vectors of the steady state gain matrix are colinear. As a

result, [y1 y2]
T lies on v1 for any u1 and u2.

If the set point is given outside v1, it can never be attained.

� This time, let the steady state gain matrix be
2
64 2 4

3 6:2

3
75

Two column vectors are nearly colinear.

Assume that ysp = (�2; 3)T ? v1.

The input is

2
64 u1
u2

3
75 =

2
64 2 4

3 6:2

3
75
�1 2

64 �2
3

3
75 =

2
64 �61

30

3
75

On the other hand, for ysp = (2 3)T = v1, the input is
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2
64 u1
u2

3
75 =

2
64 1

0

3
75

{ It is possible to control y along the v2 direction but a large input

possibly beyond the constraints is required.

{ Does it make sense to try to control both y1 and y2 independently ?

The answer will depend on the requirements of the process, but in

many cases would be `Not !"

{ If we give up one of the outputs, say y2, and control only y1 at y
sp
1 ,

only a small control energy will be required. In this case, y2 will

stay at around 1:5ysp1 .

� Since the above gain matrix has a very large condition number, we say

that the process is ill-conditioned or has a strong directionality.
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Analysis using SVD

� Let

G = [ W1 W2 ]

2
64 �1 0

0 �2

3
75
2
64 V

T
1

VT
2

3
75

� Assume that �1 � �2 where dim(�1) = m < n,

y = Gu ) y �W1�1V
T
1 u

The output is dominated by the modes with large singular values.

� On the other hand,

u = G+y = [ V1 V2 ]

2
64 ��1

1 0

0 ��1
2

3
75
2
64 W

T
1

WT
2

3
75 ) u � V2�

�1
2 WT

2 y

where + denotes the pseudo-inverse. The input is mostly determined

by less signi�cant modes associated with small singular values.

� SVD can be extended to a dynamic gain.

G(j!) =W(j!)�(j!)VT(j!)

Model Conditioning in Commercial Packages

step 0 It is assumed that operating regime for output y is given with

priority for each output.

step 1 From the SVD of G(steady state gain matrix), count the number of

signi�cant modes. Let it be m. Notify that n�m outputs are better to

be removed from the controlled variables (CVs).
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step 2 Using u = G+y, check if the input constraints can be violated for

any y within the de�ned set. If unacceptable, do the next step.

step 3 The designer takes out some of low propority outputs from CVs.

Let the reduced input-output model be yr = Gru. Repeat step 2 for

the reduced model until the estimated input is acceptable for all

possible yr.

This idea can be slightly generalized to include quantitative weighting for

each output (rather than strict priority).

Model conditioning is needed not only to prevent input constraint violation

(which would be automatically handled by the constrained MPC), but

because low-gain directions are very di�cult to identify and gains typically

carry large multiplicative errors (sometimes more than 100%).
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2.4.7 BLOCKING

� Consider an MPC problem with m = 30, nu = 4. At every sampling

instance, MPC has to decide 120 variables through QP. Are all these

values truly impotant in the prediction of major output modes ?

� The technique to reduce the number of input decision variables while

minimizing the degradation of the intended control performance is

called blocking.

� Blocking can enhance robustness of MPC, too.

Concept of Blocking

� Blocking is an approximation of the future input values by a linear

combination of appropriately chosen small number of basis vectors.

�Uk � b1�u
�
1k + bb�u

�
bk = B�U�

k b � m� nu

where m� nu is the dimension of Uk.

B is called a blocking matrix.

� QP determines �U�
k instead of �Uk.

� The most important step in blocking is to choose an appropriate

blocking matrix.
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Time-Domain Blocking - Signal Approximation

Divide the control horizon into several subintervals and decide

piecewise constant input value for each subinterval.

2
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3
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| {z }
�U�

k

Rather heuristic.

Many industrial algorithms employ the above technique.
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SVD-based Blocking

SVD of the pulse reponse matrix informs us which input

directions excite the signi�cant output directions.

Let the SVD of the truncated pulse response matrix over the

control and prediction horizons be

H = [ W1 W2 ]

2
64 �1 0

0 �2

3
75
2
64 V

T
1

V T
2

3
75

where

H =

2
6666666666666664

h1 0 � � � 0

h2 h1 � � � 0
...

...
...

...

hm hm�1 � � � h1
...

...
...

...

hp hp�1 � � � hp�m+1

3
7777777777777775

If �1 � �2, we can choose

B = V1

) Approximate �Uk as a linear combination of dominant

input principal vectors.

� considered to be better than the time-domain blocking in that

it provides structural approximation of MIMO systems, too.
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[Ex. 1] No Model Error Case

G(s) = Gmodel(s) =

2
64

17
60:48s2+15:6s+1

5
19:36s2+7:04s+1

3
10:89s2+4:62s+1

10
36s2+12s+1

3
75

Q = I; R = 0:01I; p = m = 50

�1 � Uk � 1

Regular MPC(m� nu = 100) SVD of H (b=20)
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[Ex. 2] Model Error Case

G(s) =

2
64

17
(10s+1)(10s2+s+1)

2:3
30s+1

1:3
20s+1

2:8
(10s+1)(5s2+s+1)

3
75

Gmodel(s) =

2
64

1:5
10s+1

2:2
30s+1

1:2
20s+1

2:6
10s+1

3
75

Q = I; R = I; p = m = 90

No constraints

Regular MPC(m� nu = 180) SVD of H (b=20)
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Chapter 3

SYSTEM IDENTIFICATION

The quality of model-based control absolutely relies on the quality

of the model.

3.1 DYNAMIC MATRIX IDENTIFICATION

3.1.1 STEP TESTING
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Procedure

1. Assume operation at steady-state with

controlled var.(CV) : y(t) = y0 for t < t0

manipulated var.(MV) : u(t) = u0 for t < t0

2. Make a step change in u of a speci�ed magnitude, �u for

u(t) = u0 +�u for t � t0

3. Measure y(t) at regular intervals:

yk = y(t0 + kh) for k = 1; 2; : : : ; N

where
h is the sampling interval

Nh is approximate time required to reach steady state.

4. Calculate the step response coe�cients from the data

sk =
yk � y0
�u

for k = 1; : : : ; N

Discussions

1. Choice of sampling period

� For modeling, best h is one such that N = 30 � 40.

Ex : If g(s) = Ke�ds=(�s+ 1),

then settling time � 4� + d

Therefore, h � 4�+d
N

= 4�+d
40 = 0:1� + 0:025d
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� May be adjusted depending upon control objectives.

2. Choice of step size (�u)

� too small :

May not produce enough output change

Low signal to noise ratio

� too big :

Shift the process to an undesirable condition

Nonlinearity may be induced.
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� Trial and error is needed to determine the optimum step size.

3. Choice of number of experiments
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� Averaging results of multiple experiments reduces impact of

disturbances on calculated sk's

� Multiple experiments can be used to check model accuracy by

cross-validation.

Data sets for Identi�cation $ Data set for Validation

4. An appropriate method to detect steady state is requried.

5. While the steady state (low frequency) charateristics are accurately

identi�ed, high frequency dynamics may be inaccurately charactierized.

3.1.2 PULSE TESTING

Procedure

1. Steady operation at y0 and u0.

2. Send a pulse of size �u lasting for 1 sampling period.

3. Calculate pulse response coe�cients

hk =
yk � y0
�u

for k = 1; : : : ; N

4. Calculate the step response coe�cients as a cumulative sum of hk.

sk =
kX
i=1

hi for k = 1; 2; : : : ; N
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Discussions

1. Select h and N as for the step testing.

2. Usually need �u� �u for adequate S/N ratio.

3. Multiple experiments are recommended for the same reason as in the

step testing.

4. An appropriate method to detect steady state is requried.

5. Theoretically, pulse is a perfect (unbiased) excitation for linear systems.

3.1.3 RANDOM INPUT TESTING

Concept

fhkg or fA;B;Cg or G(s)
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Type of Inputs

1. Pseudo-Random Binary Signal(PRBS)

In MATLAB, � u=u0+del*2*sign(rand(100,1))-0.5;

or � u=mlbs(12);

2. Random Noise

In MATLAB, � u=u0+del*2*(rand(100,1)-0.5);
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Data Analysis - Least Squares Fit

Given fu1; u2; : : : ; uMg and fy1; y2; : : : ; yMg, determine the best �t

FIR(�nite impulse response) model fh1; h2; : : : ; hNg.

Consider

yk = h1uk�1 + h2uk�2 + : : :+ hNuk�N + dk

Assume the e�ects of initial condition are negligible.
2
666666664

y1

y2
...

yM

3
777777775
=

2
666666664

u0 u�1 : : : u1�N

u1 u0 : : : u2�N
...

...
...

...

uM�1 uM�2 : : : uM�N

3
777777775

2
666666664

h1

h2
...

hN

3
777777775
+

2
666666664

d1

d2
...

dM

3
777777775

y = Uh+ d

The least squares solution which minimizes

(y �Uh)T (y �Uh) =
MX
i=1

0
@yi �

NX
j=1

hjui�j

1
A
2

is

ĥ =
�
UTU

��1
UTy

In MATLAB, � hhat=y\U;

Discussions

1. Random input testing, if appropriately designed, gives better models

than the step or pulse testing does since it can equally excite low to

high frequency dynamics of the process.

2. If UTU is singular, the inverse doesn't exist and identi�cation fails.

! persistent excitation condition.
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3. When the number of coe�cients is large, UTU can be easily singular

(or nearly singular). To avoid the numerical, a regularization term is

addded the the cost function. ! ridge regression

min
h

h
(y �Uh)T (y �Uh) + �hTh

i

! ĥ =
�
UTU+ �I

��1
UTy

4. Unbiasedness: If d(�) and/or u(�) is zero-mean and u(i) is uncorrelated

with d(j) for all (i; j) pairs (these conditions are easily satis�ed.), the

estimate is unbiased.

ĥ =
�
UTU

��1
UT (Uh+ d) = h+

�
UTU

��1
UTd

Since

Ef
�
UTU

��1
UTdg = 0

we have

Efĥg = h

5. Consistency: In addition to the unbiasedness,

ĥ! h (or, equivalently E
�
(ĥ� h)(ĥ� h)T

�
! 0) as M !1:

6. Extension to MIMO identi�cation is straightforward.

The above properties are inherited to the MIMO case, too.
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Example

� Process : h = [h1; h2; h3; h4; h5; � � �] = [1:5 2:0 5:5 0:1 0 � � �]

� Input : PRBS with

N = 200 �u = 0
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� The resulting output response corrupt with measurement noise with

�2n = 0:252 is

� Estimates of fhjg appear as
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3.1.4 DATA PRETREATMENT

The data need to be processed before they are used in

identi�cation.

(a) Spike/Outlier Removal

� Check plots of data and remove obvious outliers ( e.g., that are

impossible with respect to surrounding data points). Fill in by

interpolation.

� After modeling, plot of actual vs predicted output (using measured

input and modeling equations) may suggest additional outliers.

Remove and redo modelling, if necessary.

� But don't remove data unless there is a clear justi�cation.

(b) Bias Removal and Normalization

� The input/output data are biaesd by the nonzero steady state and also

by disturbance e�ects. To remove the bias, di�erence is taken for the

input/output data. Then the di�erenced data is conditioned by scaling

before using in identi�cation.

y(k) = (yproc(k)� yproc(k � 1))=cy

u(k) = (uproc(k)� uproc(k � 1))=cu

9>=
>;! identi�cation
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(c) Pre�ltering

� If the data contain too much frequency components over an undesired

range and/or if we want to obtain a model that �ts well the data over

a certain frequency range, data pre�ltering (via digital �lters) can be

done.
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3.2 BASIC CONCEPTS OF IDENTIFICATION

� u(k) is processed to y(k) by the process, i.e., y(k) contains the process

information. By treating fykg together with fu(k)g, we can extract the

process characteristics.

� A multivariable process has directional as well as frequency-dependent

characteristics.

120



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

The directional gain changes with frequencies.

� To extract all the information, the input should be properly designed

to excite all these charateristics uniformly.

� Furthermore, the process variables (inputs as well as outputs) are

subject to various random disturbances. To remove the disturbance

e�ects, some kind of averaging is needed. For perfect averaging, in�nite

number of data should be collected. The excitation input, however, has

limited magnitude and duration.

� In reality, it is neither necessary nor feasible to identify all the facets of

a process. Depending on the purpose of the model, some

characteristics should be accurately identi�ed while the others are not.

� To �nd an appropriate model to given purposes, the following three

elements need to be judiciously selected and/or designed.

{ Model description

{ Experimental condition
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{ Identi�cation method

Ex. Accurate �t of the step response does not necessarily imply a

good model for control.

(a) open-loop step response

(b) closed-loop step response
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(a) open-loop step response

(b) closed-loop step response
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3.3 MODEL DESCRIPTION

3.3.1 NONPARAMETRIC MODEL

� Models that are not described by a �nite number of parameters.

{ Pulse response model : fh0; h1; h2; � � �g

{ Step response model : fs0; s1; s2; � � �g

{ Frequency response model : G(j!)

� Pulse or step response models can be directly identi�ed from pulse or

step test.

� The pulse and step tests are very simple to conduct. However, the step

test too much emphasizes low-frequency excitation while the pulse test

gives too-widely-spread excitation over the whole frequency ranges,

hence may not provide an appropriate model adequate to control

purpose.

� In general, a parametric model is identi�ed �rst and then converted to

a nonparametric model.
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3.3.2 PARAMETRIC METHOD

ARMAX Model

y(k) = a1y(k � 1) + � � � + anay(k � na) + b1u(k � 1) + � � �+ bnbu(k � nb)

+ n(k) + c1n(k � 1) + � � �+ cncn(k � nc)

or

A(q�1)y(k)| {z }
AR

= B(q�1)u(k)| {z }
X

+C(q�1)n(k)| {z }
MA

where fn(k)g is a zero-mean i.i.d.(independent and identically distributed)

sequence or, equivalently a white noise sequence.

� (C(q�1)=A(q�1))n(k) represents the disturbance model. Depending on

the nature of the disturbance, a simpler form can be used.

When the disturbance mostly occurs at the input in the form of white

noise,

A(q�1)y(k) = B(q�1)u(k) + n(k)

might be enough.

When the disturbance mostly occurs at the output in the form of white

noise,
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A(q�1)y(k) = B(q�1)u(k) +C(q�1)n(k) !

2
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A1(q
�1)y1(k) = B11(q

�1)u1(k) + � � �+ B1m(q
�1)um(k) +Cn(q

�1)n1(k)
...

...
...

...

An(q
�1)yn(k) = Bn1(q

�1)u1(k) + � � �+ Bnm(q
�1)um(k) +Cn(q

�1)nn(k)

FIR (Finite Impulse Response) Model

y(k) = H1u(k � 1) + � � �+Hnb
u(k � nb) + w(k)

where Hi is a impulse response coe�cient (matrix) and w(k) is a zero-mean

random noise (not necessarily i.i.d.).

� Cannot be used for description of unstable systems.

� Requires (much) more parameters than the corresponding ARMAX or

state space model does.

For description of a SISO stable system, usually 40 or more pulse

response coe�cients are needed if the sampling interval is

appropriately chosen (not too short and too long).

� Irrespective of the nature of w(k) as far as it is of zero-mean, unbiased

parameter estimates can be obtained using a simple least squares

method.
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State space model

x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + v(k)

where fw(k)g and fv(k)g are white noise sequences.

� Adequate to MIMO system description.

Many useful canonical forms are well developed

� Powerful identi�cation methods called the subspace method which

directly �nds a state space model in a balanced form has been recently

developed.

A version of the subspace method was commercialized by SETPOINT.

3.4 EXPERIMENTAL CONDITIONS

3.4.1 SAMPLING INTERVAL

� Too long sampling interval ! too much loss of information

Too short sampling interval ! too much computation

� There are many di�erent guidelines. h � �=10 is thought to be

adequate for most applications.

128



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

3.4.2 OPEN-LOOP VS. CLOSED-LOOP EXPERIMENTS

Open-loop experiment

u = process input

y = process output

Closed-loop experiment

u = process input, controller output

y = process output, controller input
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) Identi�ed Model � Process or 1/Controller

� For nonparametric models (typically transfer functions),

Ĝmodel(s) � Gprocess(s) when d = 0

Ĝmodel(s) � Gcontrol(s) when v = 0

� For parametric models (FIR, ARMAX, State Space ..),

Ĝmodel(s) � Gprocess(s)

if identi�ability is satis�ed.

Identi�ability is in most case satis�ed if

1. a FIR model is used and/or

2. a high-order controller is used and/or

3. independent excitation is given on v.

3.4.3 INPUT DESIGN

� Remember that the excitation input has limited energy with �nite

magnitudes over a �nite duration. Hence, it is inevitable that the

identi�ed model has biased information of the process.

� Depending on the way how to distribute the input energy over di�erent

frequencies and also over di�erent input principal directions (for

MIMO cases), the identi�ed model may have di�erent characteristics.

� The input should preferrably be designed to su�ciently excite the

system modes which are associated with the desired closed-loop

performance.

For a SISO process, process information near the crossover frequency is

most important. The Ziegler-Nichols tuning method (i.e., continuous
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cycling method) is justi�ed in this sense.

� In general, the PRBS(Pseudo-Random Binary Sequence) is used as an

excitation signal. By adjusting the minimum step length, we can

change the frequency contents in the PRBS.
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3.5 IIDENTIFICATION METHODS

3.5.1 PREDICTION ERROR METHOD

� Estimate model parameters which minimizes the optimally determined

one-step-ahead output prediction error.

� The output predictor is constructed using the model.

� The existing identi�cation methods such as LSM, OEM, GLSM,

ELSM, PLRM, MLM etc. are special cases of PEM which are derived

for di�erent model types.

Hence, the PEM can be considered a kind of generalized framwork for

system identi�cation.

Example 1: Identi�cation of an ARMAX process using an ARX

Model

True process :

y(k) + �ay(k � 1) = �bu(k � 1) + n(k) + �c1n(k � 1)

where n(k) is white noise(� (0; �2n)).

Model :

y(k) + ay(k � 1) = bu(k � 1) + e(k) ARX model

where e(k) is assumed to be a zero-mean white noise.

Procedure

1. Given fy(k � 1); y(k � 2); � � �g and fu(k � 1); u(k � 2); � � �g,

the best one-step ahead output prediction is

132



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

^y(k) = �ay(k�1)+bu(k�1) = [�y(k�1) u(k�1) ]

2
4 a
b

3
5 = �(k)T�

2. The prediction errror at k is

"(k; �) = y(k)� ŷ(k) = y(k)� �(k)T�

3. � which minimizes the sum of squared prediction error can be

found as

min
�

NX
k=1

"(k; �)T"(k; �)

4. The above precedure can be rewritten in the vector form as

2
6664
"(1; �)

...
"(N; �)

3
7775 =

2
6664
y(1)
...

y(N)

3
7775�

2
6664
�(1)T
...

�(N)T

3
7775 � ! EN(�) = YN � �N�

min�EN(�)
TEN(�)

�̂LS = (�T
N�N)

�1�T
NYN

Discussions

� The PEM tries to seek a parameter which minimizes the

prediction error. In case that the model has a di�erent

structure from the process, the parameter is determined such

that the PE is minimized under its structural constraints.

This usually leads to unbiased estimate as shown below.

The process output can be written as
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2
6664
y(1)
...

y(N)

3
7775 =

2
6664
�(1)T
...

�(N)T

3
7775 ��+

2
6664

n(1) + �cn(0)
...

n(N) + �cn(N � 1)

3
7775 ! YN = �N

��+VN

Hence,

�̂ = (�T
N�N)

�1�T
N(�N

�� + VN) = �� + (�T
N�N)

�1�T
NVN

Taking expectation gives

E
�
�̂LS

�
= �� +E

h
(�T

N�N)
�1�T

NVN
i

| {z }
= 0 ?

Now,

�T
NVN =

2
4 �y(0) �y(1) � � � �y(N � 1)

u(0) u(1) � � � u(N � 1)

3
5
2
6664

n(1) + �cn(0)

n(2) + �cn(1)
...

n(N) + �cn(N � 1)

3
7775

=

2
4 �y(0) (n(1) + �cn(0))� y(1) (n(2) + �cn(1))� � � �

� � � � � �

3
5

Since y(k) and n(k) have correlation (E fy(k)n(k)g = �2),

E
�
�̂
�
6= �� ! BIASED !!

If �c = 0, unbased estimate !!

Example 2: Revisit of Example 1 with an ARMAX Model

This time, we consider an ARMAX model

y(k) + ay(k � 1) = bu(k � 1) + e(k) + ce(k � 1)

134



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

� Note that e(k) is not directly measurable. However, it a�ects

y(k). Hence, by treating y(k) we can obtain an estimate of

e(k).

Procedure

1. Let the estimate of e(k) be ê(k).

At k � 1, the best one-step-ahead output prediction is

ŷ(k) = �ay(k � 1) + bu(k � 1) + cê(k � 1)

= [ � y(k � 1) u(k � 1) ê(k � 1) ]

2
6664
a
b
c

3
7775 = �Tk �

2. As was in Ex. 1,

�̂ = (�T
N�N)

�1�T
NYN

3. In the above, ê(k) can be obtained by inverting the model

equation.

ê(k) = �ĉê(k � 1) + y(k) + ây(k � 1)� b̂u(k � 1); ê(0) = 0

Discussions

� To �nd ê(k), �̂ should known. On the other hand, ê(k) is

needed to �nd �̂. ! Nonlinear equation. Backsubstitution or

other nonlinear solver is required.

� Due to the structural consistency, unbiased estimate is

obtained.
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General Properties of PEM

1. Need a priori infomation on the model structure (model type and

orders of each term)

2. Structural inconsistency may lead to biased parameter estimates.

The bias is revealed di�erently for di�erentl input excitation.

3. An ARMAX model with su�ciently large orders is OK for most

applications.

To �nd a parsimonious model, however, trial and error procedure with

di�erent orders is usaully necessary.

4. Generally, nonlinear equation should be solved to �nd an estimate.

Optimumj solution is not always guaranteed.

5. Recursive (or On-line) PEM algorithms are avaliable, too

6. The PEM can be extended to MIMO identi�cation, too.

However, lack of an appropriate canonical form for the MIMO

ARMAX model leads to an overparameterized model structure.

The industrial practice for MIMO identi�cation is to seperate the

model into ny MISO (multi-input single-output) susbsystems, conduct

MISO identi�cation independently, and combine the results.

A(q�1)y(k) = B(q�1)u(k) +C(q�1)n(k) !

2
666664
A1 � � � 0
... . . . ...

0 � � � An

3
777775

2
666664
y1(k)
...

yn(k)

3
777775 =

2
666664
B11 � � � B1m

... . . . ...

Bn1 � � � Bnm

3
777775

2
666664
u1(k)
...

um(k)

3
777775+

2
666664
C1 � � � 0
... . . . ...

0 � � � Cn

3
777775

2
666664
n1(k)
...

nn(k)

3
777775
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A1(q
�1)y1(k) = B11(q

�1)u1(k) + � � �+ B1m(q
�1)um(k) +Cn(q

�1)n1(k)
...

...
...

...

An(q
�1)yn(k) = Bn1(q

�1)u1(k) + � � �+ Bnm(q
�1)um(k) +Cn(q

�1)nn(k)

7. MISO identi�cation is in e�ect same as SISO identi�cation

8. MIMO identi�cation via MISO identi�cation cannot take the

directional characterisitcs of MIMO systems into account.

3.5.2 SUBSPACE IDENTIFICATION

� Subspace identi�cation(SSID) is a very powerful method that has been

emergered from early 90s.

� SSID

1. is an o�-line identi�cation method (at least currently),

2. does not require virtually any a priori information on the model

structure,

3. can be seamlessly extended to MIMO identi�cation,

4. provides an optimally balanced stochastic state space model,

(A; B; C) and noise covariances, of minimum order using input

/output data.

� Moreover, SSID does not solve a nonlinear equation as in the PEM,

but only relies on numerically stable linear operations.

� The ID package, IPCOS, from SETPOINT is based on a version of

SSID.

� More comments will be given later.
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3.6 IDENTIFICATION OF A PROCESS WITH

STRONG DIRECTIONALITY

Suppose that we want to control the following 2� 2 system.

2
4 y1
y2

3
5
2
4 a1 0
0 a2

3
5
2
4 u1
u2

3
5+

2
4 e1
e2

3
5

where a1 = 100; a2 = 0:1 and je1j; je2j � 1.

For controller design, a1 and a2 should be known.

� To identify a1 and a2, assume that we apply excitation signals

of magnitude 1 to both inputs u1 and u2

S/N(signal to noise ratio) for y2 � 0:1 while S/N for y1 � 100

The consequence is that â2 is not correctly identi�ed. In the

worst case, the sign may be reversed.

) The y2 control loop performs poorly or may be unstable.

� In order to get over the trouble,

{ we either apply large exciation to u2 in open-loop

138



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

or

{ close the y2 loop and apply an excitation from outside the

loop.

Now consider a more general case.
2
64 y1

y2

3
75 = G

2
64 u1

u2

3
75+

2
64 e1

e2

3
75

G is decomposed as

G = [u1 u2]

2
64 �1 0

0 �2

3
75
2
64 v

T
1

vT2

3
75 ��SVD

Here, u1 ? u2, v1 ? v2, ku1k = ku2k = kv1k = kv2k = 1 .

If �1 � �2, the same problem as before arises.

To avoid the problem, it is necessary to apply large input along

the weak direction to the process either in an open-loop or a

closed-loop manner.
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[Example :] High Purity Binary Distillation
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In high purity separation,
2
4 �L
�V

3
5 =

2
4 1
1

3
5 )

2
4 �xD
�xB

3
5 =

2
4 +10�4

�10�4

3
5

2
4 �L
�V

3
5 =

2
4 1
�1

3
5 )

2
4 �xD
�xB

3
5 =

2
4 10�1

10�1

3
5

2
4 �xD
�xB

3
5 = [u1 u2]

2
4 �1 0
0 �2

3
5
2
64

1p
2
� 1p

2
1p
2

1p
2

3
75
2
4 �L
�V

3
5

where �1 � �2
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