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ymax

k k+H c

Relax the constraints between

k+1 and k+H c-1

{ Soften the constraint and penalize the degree of softening:

min�;�U(k)[Usual Objective] + ��2

ymin � � � y(k + `jk) � ymax + �

plus other constraints

2.4.2 GUIDELINES FOR CHOOSING THE HORIZON SIZE

In order to obtain good closed-loop properties and consistent tuning e�ect

from problem to problem, it is recommended to use a very large or

preferably in�nite prediction horizon (Long-sighted decision making

produces better results in general). 1-horizon DMC can be implemented in

the following way:

� choose m as large as possible (within the computational limit).

� choose

p = m+ n

where n is the number of time steps for step responses to settle.

� add constraint

y(k + pjk) = 0
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Note that the above choice of p with the equality constraint amounts to

choosing p =1. Stability of the closed-loop system is guaranteed under

this cuhoice (regardless of choice of m). Choice of m is not critical for

stability; a larger m should result in better performance at the expense of

increased computational requirement.

k+m-1

k+m-1 k+m+n-1
N time steps

The lesson is

� Use large enough horizon for system responses to settle.

� Try to penalize the endpoint error more (if not constrain to zero).

2.4.3 BI-LEVEL FORMULATION

In the DMC algorithm, control computation at each sample time is done in

two steps:

� Steady State Optimization: Here model prediction at steady state is

used to determine the optimal steady state. The steady-state model is
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in the form of

y(1jk) = Ks (u(1jk)� u(k � 1))| {z }
�us(k)

+b(k)

With only m moves considered,

�us(k) = �u(kjk) + �u(k + 1jk) + : : : : : :+�u(k +m� 1jk)

and with FIR assumption,

y(1jk) = y(k +m+ n� 1jk)

and Ks = Sn. Hence, the steady prediction equation can be easily

extracted from the dynamic prediciton equation we had earlier.

In terms of the optimization criterion, various choices are possible.

{ Most typically, some kind of linear economic criterion is used along

with constraints on the inputs and outputs:

min
�us(k)

[`(u(1jk); y(1jk))]

In this case, a linear programming (LP) results.

{ Sometimes, the objective is chosen to minimize the input move size

while satisfying various input / output constraints (posed by

control requirements, actuator limits plus those set by the rigorous

plant optimizer):

min
�us(k)

[j�us(k)j]

Again, an LP results.

{ In the pure regulation problems where setpoint for the output is

�xed, one may use

min
�us(k)

[(r � y(1jk))TQ(r � y(1jk))]
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This combined with subsequently discussed QP results in

In�nite-Horizon MPC.

� Dynamic Optimization: Once the steady-state target is �xed, the

following QP is solved to drive the outputs (and sometimes also inputs)

to their chosen targets quickly without violating constraints:

min�u(jjk)

hPm+n�2
i=1 (y(k + ijk)� y�(1jk))TQ(y(k + ijk)� y�(1jk))

+
Pm�1

j=0 �uT (k + jjk)R�u(k + jjk)
i

subject to

�u(kjk) + �u(k + 1jk) + : : : : : :+�u(k +m� 1jk) = �u�s(k)

plus various other constraints. This is a QP.

The last constraint forces y(k +m+ n� 1jk) to be at the optimal

steady-state value y�(k +1jk).

Note: The above steady-state optimization is to be distinguished from

the rigorous plant-wide optimization. The above is performed at every

sample time of MPC while the rigorous optimization is done much

more infrequently.
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2.4.4 PROPERTY ESTIMATION

� Property data q are usually obtained through on-line analyzer or lab.

analysis.

� Both have signi�cant delays and limited sampling capabilities (more so

for lab. analysis).

� On-line anayzers are highly unreliable (prone to failures).

� Using more reliable fast process measurments y (and possibly u), we

can estimate product properties at a higher frequency with a minimal

delay.

� The property estimator (sometimes called soft sensor) can be

constructed from a fundamental model or more commonly through

data regression.

� Almost all estimators used in practice today are designed as static

estimators.

� Since process variables exhibit di�erent response times, ad hoc dynamic

compensations (e.g., lead / lag elements, delays) are often added to the

static estimator.
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� If the number of process measurements is too large, the dimension can

be reduced through PCA(principal component analysis) or orther

correlation analyses.

� In some cases where nonlinearity is judged to be signi�cant, Arti�cial

Neural Networks are used for regression.

� Analyzer or lab results can be used to remove bias from the soft sensor.

Suppose the soft sensor takes the form of q̂s(p; i) = f(y(p; i)). Then,

q̂(p; i) = q̂s(p; i) + �(q(p; 0)� q̂s(p; 0))| {z }
bias correction

; 0 � � � 1
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2.4.5 SYSTEM DECOMPOSITION

In MIMO processes, some input-output pairs have no or only weak

coupling. Such systems can be decomposed into several subsystems and

separate MPC can be designed for each subsystem.

The decentralized MPC design can reduce computational demand and

improve numerical stability.

� Number of 
oating point computation in matrix algebra is proportional

to n2 or n3.

� If we can decompose an n-dimensional system into two subsystems

with equal size, the number of computation can be reduced from O(n2)

or O(n3) to O(n2=4) or O(n3=8).

� System decomposition is not a trivial task in general. It is one of the

continuing research issues studied under the title of Control Structure

Synthesis or Design of Decentralized Control.

� Some of the rather obvious cases are as follows:
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Case 1 : Complete Separation

� The system can be decomposed into (U1 U2 U4)� (Y1 Y2 Y4) and

U3 � Y3 disjoint pairs.

92



c
1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

Case 2 : Partial Separation I

� (Y1 Y2 Y4) is not a�ected by U3. But Y3 is a�ected by U4

� The system can be decomposed into two subsystems. In this case,

U4 can be treated as a measurable disturbance to the U3 � Y3 loop.
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Case 3 : Partial Separation II

� Y3 is not in
uenced by (U1 U2 U4). But, U3 has an in
uence on Y4.

� Similarly to above, the problem can be decomposed into two

subproblems. U3 acts as a measurable disturbance to the �rst

block.
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Case 4 : Partial Separation III

� If G34 and G43 have slower dynamics and smaller steady state

gains than the other transfer functions, we may decompose the

system as shown in the �gure.
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Example: Extrusion Process This example shows how the feedforward

control can be constructed in a real process situation.
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According to the input-output map, uj � yj pair is decoupled from

others while uj�1 plays a measurable disturbance to yj.

Instead of treating uj�1 as a measured disturbance, however, it is

better to take yj�1 as the measured disturbance and compensate its

e�ect through the feedforward loop.

Decentralization Options

� Decentralization for both model update and optimization.

� Full model update, but decentralized optimization.

� Full model update, full steady-state optimization (LP), but

decentralized dynamic optimization (QP).
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