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e Memory: stores the effect of past inputs on future outputs.

e Predictor: combines information stored in the memory with model
information to predict the effect of hypothesized future input

adjustments on future outputs.
(y(k+11R), y(k+2(R), .., y(k+plk)) = £ (Z(R), (Au(k),..., Au(k+m — 1)))

where Z(k) denotes the all the available information at & (stored in the

memory).
e Objective function and constraints

e Optimization program

User-chosen parameters are the prediction horizon, control horizon, and

parameters in the objective function and constraints.

2.3.2 BASIC PROBLEM SETUP

The basic system description we assume is
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u : manpulated variable
d : measured / modelled disturbance

w, : unmeasured disturbance + model / bias error effect

2.3.3 DEFINITION AND UPDATE OF MEMORY

Define the memory (state vector) as the effect of past deviation 4 current

bias of known inputs (u and d) on the future output behavior:

y(k) B B B

) ok +1) o Bulk)=Aulk+1) = _ 0
Y(k) = _ with  Ad(k) = Ad(k+1) =+ _0
| y(k+n—1) wy(k) = wy(k+1) = _0

The memory update simply consists of:
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2.3.4 PREDICTION EQUATION

We can develop the prediction based on Y (k) in the following manner
(y(k + ¢|k) denotes y(k + ¢) predicted at t = k):

y(k +1k) | Gk +1/k) |
y(k + 2|k) u(k+2/k)
y(k +plk) | L9k +p/k) |
Au(k) =Auk+1)="------ =0
y(k+1),~y(k+p) with Ad(k) = Ad(k+1)=------ =0
wy(k) =wy(k+1)=------ =0
KA 0 0 ]
Sy S 0
H ¢ | Au(klk)+ | SY |Au(k+1k)+---+ | : | Au(k+p—1lk)
; : 0
| Sy LSt ST
S 0
S5 S{
H ¢ |Adk)+ | S¢ | Ad(k+1k)+---+ | ¢ | Ad(k+p—1]k)
: : 0
i Sd i Sg_l ] i Sij ]
w(k‘—l— 1|l<:)
w(k+2|k)
+
w(k + plk) |

There are more than a few terms (marked with (-|k)) on the right-hand side
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that are unavailabe at time k.

e Assume piece-wise constant disturbances, i.e.,
Ad(k+ 1k) = Ad(k+2|k) =------ =0

e Assume the effect of unmeasured disturbance, model error, etc. are

described as a piece-wise constant signal.

wy(k+1|k) = wy(k+2]k) = --- - =wy(klk) =~ y(k) —  g(k/k)

real meas. model prediction

|

e For flexibility in adjusting the computational load, consider only m
(< p) input moves (Au(k|k), Au(k + 1|k), -, Au(k +m — 1|k)). This

means, in your prediction, assume

Au(k+mlk) = Aulk+m—-1k)=---=---=Aulk+p—-1k) =0
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In summary,

Vir1y =

[ y(k) — G(k/k) |
y(k) — G(k/k)

| y(k) —g(k/k) |

Zp(y(k) — 4(k/k))
feedback

term

Au(klk)
Au(k + 1|k)

| Au(k +m — 1]k)

glk+1/k) || sf
y(k+2/k) S
: + | ¢ | Ad(k)
G(k+p/k) | [ Sy
M,Y (k) SIAd(k)
from feedforward
memory term
S0 e e 0
Sy St 0 0
StoSe S
Sg g AR Sg_erl
S’LL
dynamic
matrix

AU(k)
future
input

moves

NOTE: More complex (dynamic) extrapolation of the feedback errors is

possible. For instance, for ramp disturbances, use

Ad(k) = Ad(k+1]k) = ------

= Ad(k+p — 1]k)

wy(k + £[k) = wy(k|k) + £(w, (k|k) — w,(k = 1|k = 1))
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T wWRwkeD) i

k-1 k k+1 k+2

- Ad(k+2)

k-1 k k+1 k+2

2.3.5 QUADRATIC CRITERION

mina, e [V(E) 2 S22 (r(k +ilk) — y(k +ilk)TQ(r(k + il k) — y(k + i|k))
+ 205 Aut (k + £k)RAu(k + (k)]

@ and R are weighting matrices; they are typically chosen as diagonal

matrices.
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Note that the objective function can be rewritten as

(k1) —y(k+ 1k ] [ Q 1 r(k+10k) —y(k +1]k)
Vik) = r(k—|—2\k)jy(k—|—2|k‘) Q ) r(k‘—l—2\k)jy(k‘—|—2\k)
| r(k+plk) —y(k+plk) | | Q | | r(k+plk) —y(k +plk) |
C Aukk) | [R 11 Auklp) ]
N Au(k + 1]k) R Au(k + 1|k)
| Au(k+m—1]k) | | R || Au(k+m —1]k) |
U
V (k) = (R(k+1]k) =Y (k+1|E)TQ(R(k+1|k) -V (k+1|k))+AUT (k) RAU (k)
where
[ r(k + 1|k) | y(k+1|k) |
r(k + 2|k) y(k + 2|k)
R(k+ 1|k) = ' . V(k+1]k) = :
| r(k+plk) | | y(k +plk)
and
Q = blockdiag[@, Q, ...,..., Q]; R =blockdiag[R, R, ...,..., R]
Note that

V(k+1|k) = MY (k) + S'Ad(k) + T, (y(k) — §(k/k)) +S" AU (k)

known term

Hence, V' (k) is a quadratic function of AU (k).
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2.3.6 CONSTRAINTS

Constraints include

e Input magnitude constraints
e Input rate constraints

e Output magnitude constraints

At t = k, one has

past < » future y

k k+1 k+m-1 k+p

horizon |

Umin S ’U,(k + g‘k) S Umax
|Au(k + Lk)| < Atpax, £€=0,---,m—1
ymingy(k_i_.ﬂk)gymaxa ]Zlaap

We want to express the above constraints as a linear inequalty in the form of

CYAU(K) < C(k)
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Manipulated Input Magnitude Constraints

Umin < u(k+L|k) < upax, £€=0,---,m—1

4

u(k+|k)

P

¢
u(k—1)+ ;)Au(k‘ +i|k) > Umin

14
—U(k‘ - 1) — Z:OAU(]C + Z‘k) 2 —Umax

—u(kt k)
U
I0 0 Umin — u(k — 1)
I 0 : Umin — u(k — 1
o 0 [ Au(klk) :
I 1 - T Au(k + 1|k) S | Umin — u(k — 1) |
] — E - Uy — u(k — 1) ]
0 | Au(k+m —1k) | Umax — U(k — 1)
0 :
I1I I Umax — u(k — 1)
4
Umin — u(k — 1)
1 min — u(k —1
Ll aur) > tmin — ulk = 1)
—1 Umax — u(k — 1)
Umax — U(k — 1)
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Manipulated Variable Rate Cosntraints

|Au(k + k)| < Aupax,

4

(=0,

—Atpaxy < Au(k + k) < Aupax

.0

0 :

0
0 0 I
. o
0 :

N 0
0 O I

4

Au(k +0)k) > —Aupax
—Au(k +L|k) > —AUpax

U
Au(k|k)
Au(k + 1|k)
Au(k +m — 1]k) |

4
Aumax
A/U’HIaX
Aty
A/U’HIaX

7

AV
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Output Magnitude Constraints

ymingy(k’_‘_ﬂk)gymax; jzla"')p
Y

y(k + ]|k) Z Ymin
_y(k + ]|k) Z ~—Ymax

J
Y (k) + SUAd(k) + T, (y(k) — §(k/k)) + SHAU(k) o | Yin
M Y(k:) SIAd(k) — T,(y(k) — G(k/k)) — SYAUK) | T | —Viax
where
Ymin Ymax
y min — yﬂ:lin y max — Ymax
| Ymin | | Ymax |
y(k + 1|k)
V(k+1|k) 2 : = MY (k)+S*Ad(k)+L,(y(k)—ij(k/k))+SH AU (k)
y(k + plk)
J
ST gy | V= MY (8) = SUAd(E) = Ty (u(k) = 30/ )
— —Vunax + MY (k) + SUAd(k) + T, (y(k) — §(k/k))
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In summary, we have

Umin — u(k — 1)
Umin — u(k — 1
Umax — U(k — 1)
[L - :
I Umax — u(k — 1)
I AU(R) > Aty
-1 — :
SU AUmax
L _SU ] _ Aumax |
At ax
ymin - Mp?(k) - SdAd(k) _ Ip(y(k) _ g(k/k))
L _ymax + MpY(k) _|_ SdAd(k) +Ip(y(k) o g(k/k)) 1

The above is in the form of linear equality,
CYAU(K) > C(k)

Note that C¥ is a constant matrix while C(k) must be updated at each time

step.

Although not treated here, time-varying constraints can easily be

incorporated into the formulation.

2.3.7 QUADRATIC PROGRAMMING

Problem:
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At each sample time, we have a minimization with an objective function
V(k) = (R(k+1]k)=Y(k+1|k))" Q(R(k+1|k) -V (k+1|k))+AU" (k) RAU (k)
with the prediction equation constraint

V(k +1|k) = MY (k) + S"Ad(k) + T, (y(k) — §(k/k)) + S AU(k)
and the inequality constraint

CYAU (k) > C(k)

Putting Into the Standard QP Form:

Substituting the prediction equation constraint into the objective gives

V(k) = 7(k)QE(k) — 26T (k)QSY AU(k) + AUT (k) (S* QS™ + R) AU (k)
G (k) H

E(k) = R(k+1Jk) — MY (k) — S'Ad(k) — T, (y(k) — 5(k/k))

v

Note that £(k) can be computed with information given to us at time k.
Hence, V' (k) is a quadratic function of AU (k) with hessian matrix H and
gradient vector G(k).

Since we have a minimization of a quadratic objective with a linear
inequality constraint, we have a quadratic programming (QP). The

standard form of quadratic programming is

min, 27 HaT — g7«
Cx>c

The parameters that should be supplied to the QP solver are H, g,C and c.
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In our case, at t = k,

z: AU(k)
H:H2(STQSY + R
0+ G(k) 2 ASOTQULT (K) + STA(K) + T, (u(k) = 5(k/K)) = Resap)
Iy,
I
c.eva| !
—1
SZ/{
—_SU
| Umin — u(k — 1)
Umin — u(k — 1)
Umax — u(k — 1)
Umax — u(k — 1)
c:C(k) 2 Au.max
Atpax
Aumax
Aty ax

Viin — MY (k) — SUAd(k) — T (y(k) — (k/k)) ]
| = Vuax + MY (k) + SAd(k) + L, (y (k) — Gi(k/k)) | |

Following are some comments on quadratic programming.

e QP is convex and therefore fundamentally tractable.

e The solution doesn’t necessarily lie at the vertices of feasible

region(unlike LPs). One may have any number of active constraints
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(up to the QP dimension).

e The size of QP is m X n, where m is the control input horizon and n,,
is the number of input. Computational time of QP depends on many
things (e.g., Hessian size, its structure, number of constraints, the
proximity of the solution to the active constraints) and is difficult to

predict.
e Off-the-shelf QP solver is available, but is often not the best choice in

terms of computational efficiency. Because the hessian and gradient for
QP tends to be highly structured (sparse), an algorithm tailored to

take advantage of this is recommended.

e QP solver requires inversion of the hessian. Since the hessian is a
constant matrix (given fixed input / output weights and model
parameters), it only needs to be inverted once off-line. This eliminates
the time-consuming step of inverting the hessian at each QP run. Only
when the weighting matrices are model parameters are changed,

hessian needs to be recomputed and inverted in the background.

e Since most QPs are feasible-path algorithms, the number of inequality
constraints also affect the computational time. One should use the

constraints sparingly.

e The most well-known solution strategy is the active set strategy. In
this method, first a feasible solution is found. Then, the least squares
problem is solved with the active constraints as equality constraints.
The optimality of the solution is checked through Kuhn-Tucker
conditions. If they are not satisfied, the active constraint set is

updated and the procedure is repeated.

e Another emerging method is the interior point (IP) method. In the IP
method, a barrier function is used to trap the solution within the
feasible region. Newton interation is used to converge to the optimum.

This method has many attractive features like quick convergence (most
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problems converge with 5-50 iterations regardless of the problem size)

and ability exploit the problem structure.

2.3.8 SUMMARY OF REAL-TIME IMPLMENTATION

1. Initialization: Initialize the memory vector Y'(0) and the reference

vector R(1]0). Set k = 1.

2. Memory Update:
— MY (k—=1)+S"Au(k—1)+S?Ad(k—1)

Y (k—1)

gk —1/k—1)
g(k/k—1)

g](k‘—l—n—'S/k‘—l)

L g(k+n—2/k—1) |

gk+n—-1/k—-1)

 jk+n—1/k—1)

g(k/k—1)
gk +1/k — 1)

g(k‘—l-n—.2/k—1)

S
S2

Av(k—-1) =

LGk +n—1/k) |

—  Y(k)

y(k/k)
y(k+1/k)

g(k:+ﬂ— 2/k)

3. Reference Vector Update: Update R(k + 1|k) by shifting R(k|k — 1)

and entering a new reference value.

r(klk — 1)
r(k+ 1|k —1)

r(k+p—2lk—1)
| r(k+p—1k—1) |

r(k+ 1|k)
r(k+ 2|k)

r(k —I—]; — 1]k)
r(k + p|k)

4. Measurement Intake: Take in new measurement y(k) and Ad(k).
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5. Calculation of the Gradient Vector and Constraint Vector:
G(k) = 2(S")" Q(M,Y (k) + S*Ad(k) + T, (y(k) — §(k/k)) — R(k +1[k))

Update the constraint vector C(k) similarly.

6. Solve QP: Call the QP subroutine with pre-inverted H,C% and
computed G(k),C(k).

7. Implementation of input: Implement Au(k|k):
u(k) = u(k — 1) + Au(kl|k)

8. Go back to Step 2 after setting k = k£ + 1.

2.4 ADDITIONAL ISSUES

2.4.1 FEASIBILITY ISSUE AND CONSTRAINT
RELAXATION

e Output constraints can become infeasible (impossible to satisfy). For
example, if we require —e < y(k + £|k) < e for all £, as € — 0, the

constraint becomes infeasible.

e When the QP is declared infeasible, one must relax the output

constraints. Various ways to relax the constraints exist:

— Relax the constraint starting from the initial time one by one until

it is feasible.
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