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3.5 IIDENTIFICATION METHODS

3.5.1 PREDICTION ERROR METHOD

� Estimate model parameters which minimizes the optimally determined

one-step-ahead output prediction error.

� The output predictor is constructed using the model.

� The existing identi�cation methods such as LSM, OEM, GLSM,

ELSM, PLRM, MLM etc. are special cases of PEM which are derived

for di�erent model types.

Hence, the PEM can be considered a kind of generalized framwork for

system identi�cation.

Example 1: Identi�cation of an ARMAX process using an ARX

Model

True process :

y(k) + �ay(k � 1) = �bu(k � 1) + n(k) + �c1n(k � 1)

where n(k) is white noise(� (0; �2n)).

Model :

y(k) + ay(k � 1) = bu(k � 1) + e(k) ARX model

where e(k) is assumed to be a zero-mean white noise.

Procedure

1. Given fy(k � 1); y(k � 2); � � �g and fu(k � 1); u(k � 2); � � �g,

the best one-step ahead output prediction is
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^y(k) = �ay(k�1)+bu(k�1) = [�y(k�1) u(k�1) ]

2
4 a

b

3
5 = �(k)T�

2. The prediction errror at k is

"(k; �) = y(k)� ŷ(k) = y(k)� �(k)T�

3. � which minimizes the sum of squared prediction error can be

found as

min
�

NX
k=1

"(k; �)T"(k; �)

4. The above precedure can be rewritten in the vector form as

2
6664
"(1; �)

...
"(N; �)

3
7775 =

2
6664
y(1)
...

y(N)

3
7775�

2
6664
�(1)T
...

�(N)T

3
7775 � ! EN(�) = YN � �N�

min�EN(�)
TEN(�)

�̂LS = (�T
N�N)

�1�T
NYN

Discussions

� The PEM tries to seek a parameter which minimizes the

prediction error. In case that the model has a di�erent

structure from the process, the parameter is determined such

that the PE is minimized under its structural constraints.

This usually leads to unbiased estimate as shown below.

The process output can be written as
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2
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y(1)
...

y(N)

3
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2
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�(1)T
...

�(N)T

3
7775 ��+

2
6664

n(1) + �cn(0)
...

n(N) + �cn(N � 1)

3
7775 ! YN = �N

��+VN

Hence,

�̂ = (�T
N�N)

�1�T
N(�N

�� + VN) = �� + (�T
N�N)

�1�T
NVN

Taking expectation gives

E
�
�̂LS

�
= �� +E

h
(�T

N�N)
�1�T

NVN
i

| {z }
= 0 ?

Now,

�T
NVN =

2
4 �y(0) �y(1) � � � �y(N � 1)

u(0) u(1) � � � u(N � 1)

3
5
2
6664

n(1) + �cn(0)

n(2) + �cn(1)
...

n(N) + �cn(N � 1)

3
7775

=

2
4 �y(0) (n(1) + �cn(0))� y(1) (n(2) + �cn(1))� � � �

� � � � � �

3
5

Since y(k) and n(k) have correlation (E fy(k)n(k)g = �2),

E
�
�̂
�
6= �� ! BIASED !!

If �c = 0, unbased estimate !!

Example 2: Revisit of Example 1 with an ARMAX Model

This time, we consider an ARMAX model

y(k) + ay(k � 1) = bu(k � 1) + e(k) + ce(k � 1)
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� Note that e(k) is not directly measurable. However, it a�ects

y(k). Hence, by treating y(k) we can obtain an estimate of

e(k).

Procedure

1. Let the estimate of e(k) be ê(k).

At k � 1, the best one-step-ahead output prediction is

ŷ(k) = �ay(k � 1) + bu(k � 1) + cê(k � 1)

= [ � y(k � 1) u(k � 1) ê(k � 1) ]

2
6664
a

b

c

3
7775 = �Tk �

2. As was in Ex. 1,

�̂ = (�T
N�N)

�1�T
NYN

3. In the above, ê(k) can be obtained by inverting the model

equation.

ê(k) = �ĉê(k � 1) + y(k) + ây(k � 1)� b̂u(k � 1); ê(0) = 0

Discussions

� To �nd ê(k), �̂ should known. On the other hand, ê(k) is

needed to �nd �̂. ! Nonlinear equation. Backsubstitution or

other nonlinear solver is required.

� Due to the structural consistency, unbiased estimate is

obtained.
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General Properties of PEM

1. Need a priori infomation on the model structure (model type and

orders of each term)

2. Structural inconsistency may lead to biased parameter estimates.

The bias is revealed di�erently for di�erentl input excitation.

3. An ARMAX model with su�ciently large orders is OK for most

applications.

To �nd a parsimonious model, however, trial and error procedure with

di�erent orders is usaully necessary.

4. Generally, nonlinear equation should be solved to �nd an estimate.

Optimumj solution is not always guaranteed.

5. Recursive (or On-line) PEM algorithms are avaliable, too

6. The PEM can be extended to MIMO identi�cation, too.

However, lack of an appropriate canonical form for the MIMO

ARMAX model leads to an overparameterized model structure.

The industrial practice for MIMO identi�cation is to seperate the

model into ny MISO (multi-input single-output) susbsystems, conduct

MISO identi�cation independently, and combine the results.

A(q�1)y(k) = B(q�1)u(k) +C(q�1)n(k) !

2
666664
A1 � � � 0
... . . . ...

0 � � � An

3
777775

2
666664
y1(k)
...

yn(k)

3
777775 =

2
666664
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... . . . ...

Bn1 � � � Bnm

3
777775

2
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u1(k)
...

um(k)

3
777775+

2
666664
C1 � � � 0
... . . . ...

0 � � � Cn

3
777775

2
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...
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3
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A1(q
�1)y1(k) = B11(q

�1)u1(k) + � � �+ B1m(q
�1)um(k) +Cn(q

�1)n1(k)
...

...
...

...

An(q
�1)yn(k) = Bn1(q

�1)u1(k) + � � �+ Bnm(q
�1)um(k) +Cn(q

�1)nn(k)

7. MISO identi�cation is in e�ect same as SISO identi�cation

8. MIMO identi�cation via MISO identi�cation cannot take the

directional characterisitcs of MIMO systems into account.

3.5.2 SUBSPACE IDENTIFICATION

� Subspace identi�cation(SSID) is a very powerful method that has been

emergered from early 90s.

� SSID

1. is an o�-line identi�cation method (at least currently),

2. does not require virtually any a priori information on the model

structure,

3. can be seamlessly extended to MIMO identi�cation,

4. provides an optimally balanced stochastic state space model,

(A; B; C) and noise covariances, of minimum order using input

/output data.

� Moreover, SSID does not solve a nonlinear equation as in the PEM,

but only relies on numerically stable linear operations.

� The ID package, IPCOS, from SETPOINT is based on a version of

SSID.

� More comments will be given later.
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3.6 IDENTIFICATION OF A PROCESS WITH

STRONG DIRECTIONALITY

Suppose that we want to control the following 2� 2 system.

2
4 y1
y2

3
5
2
4 a1 0
0 a2

3
5
2
4 u1
u2

3
5+

2
4 e1
e2

3
5

where a1 = 100; a2 = 0:1 and je1j; je2j � 1.

For controller design, a1 and a2 should be known.

� To identify a1 and a2, assume that we apply excitation signals

of magnitude 1 to both inputs u1 and u2

S/N(signal to noise ratio) for y2 � 0:1 while S/N for y1 � 100

The consequence is that â2 is not correctly identi�ed. In the

worst case, the sign may be reversed.

) The y2 control loop performs poorly or may be unstable.

� In order to get over the trouble,

{ we either apply large exciation to u2 in open-loop
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or

{ close the y2 loop and apply an excitation from outside the

loop.

Now consider a more general case.
2
64 y1

y2

3
75 = G

2
64 u1

u2

3
75+

2
64 e1

e2

3
75

G is decomposed as

G = [u1 u2]

2
64 �1 0

0 �2

3
75
2
64 v

T
1

vT2

3
75 ��SVD

Here, u1 ? u2, v1 ? v2, ku1k = ku2k = kv1k = kv2k = 1 .

If �1 � �2, the same problem as before arises.

To avoid the problem, it is necessary to apply large input along

the weak direction to the process either in an open-loop or a

closed-loop manner.

139



c
1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

[Example :] High Purity Binary Distillation
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In high purity separation,
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where �1 � �2
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