3.2 INTERACTION AND I/O PAIRING

3.2.1 INTERACTION

- When G_{c1} is open, the process that G_{c2} controls is G_{22} .
- When G_{c1} is closed, however, the process controlled by G_{c2} becomes

$$
\bar{G}_{22} = G_{22} - \frac{G_{21} G_{c1} G_{12}}{1+G_{c1} G_{11}}
$$

If both G_{12} and G_{21} are not zero, G_{22} varies with G_{c1} .

If G_{c1} is adjusted, G_{c2} should be retuned, too.

- Same thing can be said for G_{c1} .
- The above probelm is caused by the *interaction* through G_{21} and G_{12} .

Ex. Consider the following process:

$$
\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{10s+1} & \frac{1.5}{s+1} \\ \frac{1.5}{s+1} & \frac{2}{10s+1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
$$

Assume that P-control is used for both G_{c1} and G_{c2} .

- When only one of y_1 and y_2 is under control, the controller gain can have value (as far as it is positive) without causing stability problem.
- When both control loops are closed, stability is attained for the controller gains in a limited region shown below. Both gains cannot be increased simultaneously.

Ex. This time, we consider the process

$$
\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{10s+1} & \frac{1.5}{s+1} \\ -\frac{1.5}{s+1} & \frac{2}{10s+1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
$$

Again, it is assumed that P-control is used for both G_{c1} and G_{c2} .

The stability region is changed to

3.2.2 I/O PAIRING

- Suppose that we want to control a MIMO process using single-loop controllers (in a decentralized fashion).
- Then the pairing will be the primary question. u_1-y_1/u_2-y_2 or $u_1 - y_2/u_2 - y_1$?
- From the previous considerations, the judgement for proper pairing can be made based on an interaction measure.
- How to measure interaction ? Many different ways, but the most widely used one is the relative gain by Bristol(1968).

Relative Gain

Definition :

$$
\lambda_{11} = \frac{\Delta y_1^{op}/\Delta u_1}{\Delta y_1^{cl}/\Delta u_1}
$$

=
$$
\frac{\text{gain between } u_1 \text{ and } y_1 \text{ when all other loops are open}}{\text{gain between } u_1 \text{ and } y_1 \text{ when all other loops are closed}}
$$

- The relative gain is usually defined under steady state conditions.
- $\Lambda = [\lambda_{ij}]$ is called the *Relative Gain Array*.

Interpretations:

- Obviously, $\lambda_{11} = 1$ when G_{12} and/or G_{21} is zero. \Rightarrow No interaction, $u_1 - y_1$ pair is decoupled from other loops.
- $\lambda_{11} = 0$ when $G_{11} = 0 \Rightarrow$ No coupling between u_1 and y_1 ; σ 1 showld be paired with u2 for a 2 $-$ s $-$ process.
- $\lambda_{11} > 1 \implies$ The gain is increased when other loops are closed.
- λ_{11} < 1 \Rightarrow Sign of the gain is reversed when other loops are closed.
- $\lambda_{11} \gg 1$ or $\lambda_{11} \ll 1$ implies that the system has serious interaction. \rightarrow SISO pairing has limitations. \rightarrow should rely on MIMO control.

Properties:

• For an $n \times n$ process, $\sum_i \lambda_{ij} = \sum_j \lambda_{ij} = 1$. <u>Product</u> the contract of the $j \cdot i$, $j \cdot j$ For a 2 process, we have a

$$
\lambda_{11}=\frac{1}{1-K_{12}K_{21}/K_{11}K_{22}},\quad \lambda_{22}=\lambda_{11},\quad \lambda_{12}=\lambda_{21}=1-\lambda_{11}
$$

 The relative gain can be directly computed from the steady state gain matrix of the process.

Let K be the steady state gain matrix of a process. Then,

$$
\Lambda = \mathbf{K} \bigotimes \mathbf{K}^{-T}
$$

where \otimes denotes the element-by-element multiplication.

3.3 DECOUPLING

- When 11 is far from one for ^a ² 2 process, decentralized control has $\hbox{limitations.} \quad \Rightarrow \quad \hbox{Multivariable Control}$
- One of the classical multivariable control techniques is decoupling control.

Decoupled Process

If we neglect the input saturation blocks,

$$
y_1 = (G_{11} + G_{12}D_{12})m_1 + (G_{12} + G_{11}D_{21})m_2
$$

$$
y_2 = (G_{21} + G_{22}D_{12})m_1 + (G_{22} + G_{21}D_{21})m_2
$$

Let

$$
\begin{array}{rcl} D_{21} &=& -\dfrac{G_{12}}{G_{11}}\\[2ex] D_{12} &=& -\dfrac{G_{21}}{G_{22}} \end{array}
$$

Then

$$
y_1 = \left(G_{11} - \frac{G_{12}G_{21}}{G_{22}}\right)m_1 = G'_1m_1
$$

$$
y_2 = \left(G_{22} - \frac{G_{21}G_{12}}{G_{11}}\right)m_2 = G'_2m_2
$$

The relative gain for the decoupled process, $\lambda_{11d},$ is one.

Multivariable Control

$$
u_1 = m_1 + D_{21}m_2
$$

$$
u_2 = m_2 + D_{12}m_1
$$

Remarks :

- A decisive drawback of decoupling control is that it is sensitive to model error.
	- For processes with $\lambda_{11} \approx 1, \lambda_{11d} \approx 1.$
	- As λ_{11} deviates from one, λ_{11d} also deviates from one.

Let

$$
\begin{array}{lcl} D_{21} & = & (1 + \delta) \left(- \frac{G_{12}}{G_{11}} \right) \\ D_{12} & = & (1 + \delta) \left(- \frac{G_{21}}{G_{22}} \right) \end{array}
$$

- \bullet The decoupler can be designed at the output.
- To design decoupling control, Process Model is required ! Why not try other MIMO control techniques ?