

Mass transfer

Lecture 11: Diffusion

Jamin Koo 2019. 11. 4

Learning objectives

- Be able to apply Fick's first law in analyzing mass transfer during equimolar and one-way diffusion.
- Have both qualitative and quantitative knowledge of diffusion by gases and liquids, especially with respect to diffusivities.
- · Have practical understanding of Schmidt number.

Today's outline

Background

- ✓ Introduction
- ✓ Four types of situations
- ✓ Fick's first law, and molar flowrate
- ✓ Equimolar diffusion
- ✓ One-way diffusion

Diffusivities and Schmidt number

- ✓ Relations between diffusivities
- ✓ Diffusion of gases, experimental values
- ✓ Diffusion of liquids
- ✓ Schmidt number

Convection versus diffusion

https://www.youtube.com/watch?v=EG4ZoVTSA5I&t=9s

17.1 Introduction

- Diffusion can be due to gradient in many conditions including concentration, temperature, pressure, activity, and external force.
 - ✓ We will only consider diffusion due to concentration gradient in this chapter.
 - ✓ Why does molecules diffuse from higher concentration to a lower concentration?

17.1 Four types of situations

- Mass transfer through diffusion results in one of the following 4 types of situations:
 - 1) Only one component A of the mixture is transferred
 - 2) Diffusion of A is balanced by opposite molar flow of B, resulting in zero net molar flow.
 - 3) Diffusion of A and B occur in opposite directions with unequal amounts.
 - 4) Two or more components diffuse in the same direction but at different rates.

17.1 Fick's first law

 For steady state, 1D diffusion in a direction perpendicular to the interface,

$$J_A = -D_v \frac{\mathrm{d}c_A}{\mathrm{d}b}$$

where J_A is the molar flux [mol/m²/hr],

 D_v is the volumetric diffusivity [m²/hr]

 c_A is the concentration of A [mol/m³]

b is the distance in the direction of diffusion [m]

✓ For 3D diffusion,

$$J_A = -D_v \nabla c_A = -\rho_M D_v \nabla x_A$$

where ρ_M is the molar density of the mixture [mol/m³]

 x_A is the mole fraction of A

17.1 Molar flow rate

 For components A and B crossing a stationary plane, the molar fluxes are

$$N_i = c_i u_i$$

where u_i is the *volumetric average* velocity [m/hr] of component i

- For a reference plane moving at the volume-average velocity u_o ,
 - ✓ There is no net volumetric flow across this plane.
 - ✓ The molar flux of A through this reference plane becomes

$$J_A = c_A u_A - c_A u_0 = c_A (u_A - u_0) = -D_{AB} \frac{dc_A}{db}$$
$$N_A = c_A u_0 + -D_{AB} \frac{dc_A}{db}$$

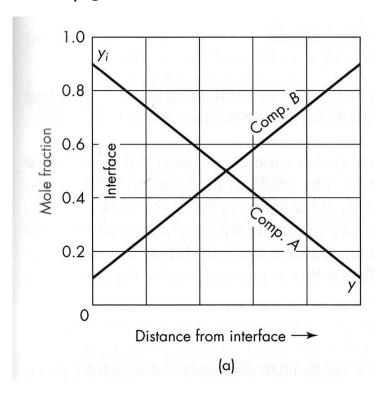
where D_{AB} is the diffusivity of A in its mixture with B.

✓ The diffusion velocity is relative to volume-average velocity u_0 .

17.1 Equimolal diffusion

 For ideal gases consisting of A and B, this is the case when there is no net volumetric/molar flux:

$$u_0 = 0 \rightarrow N_A = -D_v \frac{\mathrm{d}c_A}{\mathrm{d}b} = -D_v \rho_M \frac{\mathrm{d}y_A}{\mathrm{d}b}$$


✓ Integrating this eqn for a film of thickness B_T gives

$$-D_{v} \rho_{M} \int_{y_{Ai}}^{y_{A0}} dy_{A} = N_{A} \int_{0}^{B_{T}} db$$

$$N_{A} = J_{A} = \frac{D_{v} \rho_{M}}{B_{T}} (y_{Ai} - y_{A0})$$

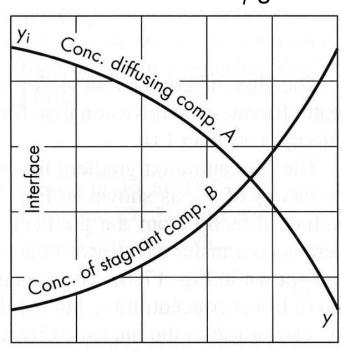
$$= \frac{D_{v}}{B_{T}} (C_{Ai} - C_{A0}) = -N_{B}$$

where y_{A0} = mole fraction at outer edge y_{Ai} = mole fraction at interface (or inner edge of the film)

17.1 One-way diffusion

 For ideal gases consisting of A and B, this is the case when only component A is being transferred:

$$N = N_A \rightarrow N_A = y_A N_A - D_v \rho_M \frac{\mathrm{d}y_A}{\mathrm{d}b}$$


 \checkmark Rearranging and integrating this eqn for a film of thickness B_T gives

$$-D_{v} \rho_{M} \int_{y_{Ai}}^{y_{A0}} \frac{1}{1-y_{A}} dy_{A} = N_{A} \int_{0}^{B_{T}} db$$

$$N_{A} = \frac{D_{v} \rho_{M}}{B_{T}} \ln \frac{1-y_{A0}}{1-y_{Ai}}$$

$$= \frac{D_{v} \rho_{M}}{B_{T}} \frac{y_{Ai}-y_{A0}}{(1-y_{A})_{L}}$$
where $\overline{(1-y_{A})_{L}} = \frac{y_{Ai}-y_{A0}}{\ln \left[\frac{1-y_{A0}}{1-y_{A0}}\right]}$

✓ For a given $y_{Ai} - y_{A0}$, is one-way diffusion faster or slower than the equilmolar diffusion?

Distance from interface ->

17.1 Relations between diffusivities

For ideal gases consisting of A and B,

$$c_A + c_B = \rho_M = \frac{P}{RT}$$
 [mol/m³]

where *R* is the ideal gas constant; *P* and *T* are pressure and temp.

At constant T & P, the mixture density remains constant, meaning $\mathrm{d}\rho_M = \mathrm{d}c_A + \mathrm{d}c_B = 0$ $-D_{AB}\frac{\mathrm{d}c_A}{\mathrm{d}b} - D_{BA}\frac{\mathrm{d}c_B}{\mathrm{d}b} = 0 \quad \rightarrow D_{AB} = D_{BA}$

For liquid mixture of A and B,

 $c_A M_A + c_B M_B = \rho = constant$ [kg/m³] where M_i is the molecular weight of a component i.

If all mixtures have the same ρ , $d\rho = M_A dc_A + M_B dc_B = 0$ $-D_{AB} \frac{dc_A}{db} \frac{M_A}{\rho} - D_{BA} \frac{dc_B}{db} \frac{M_B}{\rho} = 0 \rightarrow D_{AB} = D_{BA}$

17.1 Diffusion of gases

Simple theory states

$$D_v \cong \frac{1}{3} \; \bar{u} \; \lambda$$

where \bar{u} and λ are the average molecular velocity and mean free path.

Using the modern kinetic theory,

$$D_{AB} = \frac{0.001858 \, T^{3/2} \, [(M_A + M_B)/M_A \, M_B]^{1/2}}{P \, \sigma_{AB}^2 \, \Omega_D}$$

where σ_{AB} and Ω_D are effective collision diameter and integral, respectively.

• When diffusing through a cylindrical pore (D $<<\lambda$),

$$D_K = 9,700 \, r \sqrt{T/M}$$

where D_K = Knudsen diffusivity [cm²/s], r = pore radium [cm],

T = temp. [K], and M = molecular weight [g/mol]

17.1 Experimental values

 Diffusivities are best obtained by experimental measurements but can be estimated using published

correlations.

✓ Values of D_v for some common gases diffusing in air (0 °C, 1 atm)

✓ Typical diffusivity ~ ? cm²/s

Gas	Volumetric diffusivity D_v , $\mathrm{ft}^2/\mathrm{h}^q$	$\mathrm{Sc} = rac{\mu}{ ho D_v}$
Acetic acid	0.413	1.24
Acetone	0.328	1.60
Ammonia	0.836	0.61
Benzene	0.299	1.71
n-Butyl alcohol	0.273	1.88
Carbon dioxide	0.535	0.96
Carbon tetrachloride	0.268	1.97
Chlorine	0.43§	1.19
Chlorobenzene	0.24§	2.13
Ethane	0.49 [§]	1.04
Ethyl acetate	0.278	1.84
Ethyl alcohol	0.396	1.30
Ethyl ether	0.302	1.70
Hydrogen	2.37	0.22
Methane	0.748	0.69
Methyl alcohol	0.515	1.00
Naphthalene	0.199	2.57
Nitrogen	0.70 [§]	0.73
-Octane	0.196	2.62
Oxygen	0.690	0.74
Phosgene	0.318	1.65
Propane	0.368	1.42
ulfur dioxide	0.44	1.16
Coluene	0.275	1.86
Vater vapor	0.853	0.60

[†]By permission, from T. K. Sherwood and R. L. Pigford, *Absorption and Extraction*, 2nd ed., p. 20. Copyright 1952, McGraw-Hill Book Company, New York.

[‡]The value of μ/ρ is that for pure air, 0.512 ft²/h.

[§]Calculated by Eq. (17.28).

and e2n to am2/s multiply by 0.2581.

17.1 Diffusion of liquids

- Limited experimental data and models are available.
 - ✓ Diffusivities are usually 10⁴~10⁵ lower than gases at 1 atm. Why?
 - ✓ Fluxes for a given mole fraction, however, is similar to gases. Why?
- For large spherical molecules in dilute solution,

$$D_v = \frac{k T}{6\pi r_0 \mu} = \frac{7.32 \times 10^{-16} T}{r_0 \mu}$$
 [cm²/s]

where r_0 is the molecular radius [cm], μ is viscosity [cP], and k is ???

For small to moderate molecules (MW < 400 g/mole),

$$D_v = 7.4 \times 10^{-8} \frac{(\psi_B M_B)^{1/2} T}{\mu V_A^{0.6}}$$
 [cm²/s]

where ψ_B and V_A are association parameter for solvent, and molar volume of solute as liquid at its normal bp, respectively.

17.1 Diffusion of liquids

For dilute aqueous solutions of non-electrolytes,

$$D_v = \frac{13.26 \times 10^{-5}}{\mu_R^{1.14} V_A^{0.589}}$$
 [cm²/s]

where μ_B is viscosity of water [cP].

 For dilute solutions of completely ionized univalent electrolytes,

$$D_v = \frac{2R T}{(\frac{1}{\lambda_+^0} + \frac{1}{\lambda_-^0}) F_a^2}$$
 [cm²/s]

where λ_+^0 and λ_-^0 are limiting (zero-concentration) ionic conductance [A cm² /V/g]; F_a is Faraday constant (96,500 C/g].

Is diffusivity the same for the same liquid? Why or why not?

17.1 Schmidt number

It is the ratio of kinematic viscosity to the diffusivity:

$$Sc = \frac{v}{D_v} = \frac{\mu}{\rho D_v}$$

- ✓ For gases in air (0 °C, 1 atm), it is about 0.2~3.0.
- ✓ For liquids, it ranges from 10^2 to 10^5 for typical mixtures: $D_v \sim 10^{-5}$ cm²/s and $Sc \sim 10^3$ for small solutes in water (20 °C).
- ✓ What would happen, for liquids, if T increases?