

Mass transfer

Lecture 09: Liquid extraction

Jamin Koo 2019. 10. 14

Learning objectives

- Analyze liquid-liquid extraction using mass balance equations, and the modified McCabe-Thiele method.
- Understand and be able to interpret the threephase equilibria diagram.
- Apply the Hunter-Nash method in calculating the number of ideal stages needed for the Type I system without reflux.

Today's outline

Analysis of liquid extraction

- ✓ Principles
- ✓ Ex. 23.2
- ✓ Phase equilibria, equilibrium diagram
- ✓ McCabe-Thiele Method
- ✓ Ex. 23.3
- ✓ Extraction using reflux

Hunter-Nash method

✓ Application to acetone, water, MIK system (Type I)

- ✓ Why is K different between a and b?
- ✓ Why is K much larger than 1 (Hint: chemical structure of ethyl acetate)?

23.3 Principles of extraction

- For extraction of dilute solutions where changes in flow rate and K_D can be neglected,
 - ✓ an extraction factor E is defined by

$$E \equiv \frac{K_D V}{L}$$

where the distribution coefficient $K_D = y_e/x_e$

✓ For a single-stage extraction with pure solvent (V), the fraction of solute remaining is calculated by:

23.3 Recovery of Penicillin F

- **Ex. 23.2**. Penicillin F is recovered from a dilute aqueous fermentation broth by extraction with amyl acetate, using 6 volumes of solvent per 100 volumes of the aqueous phase. At pH = 3.2, K_D is 80. (In-class)
- (a) What fraction of the penicillin would be recovered in a single ideal stage? (b) What would be the recovery with two-stage extraction using fresh solvent in both stages? (c) How many ideal stages would be needed to give the same recovery as in part (b) if a counterflow cascade were used with V/L = 0.06?

23.3 Phase equilibria

For extraction of concentrated solutions,

- ✓ the equilibrium data are often presented in a triangular diagram as shown in below: (Type I)
- ✓ solute (a), diluent (b), and solvent (s)
- ✓ plait point E
- ✓ line ACE vs BDE
- ✓ tie lines and slope
- ✓ Concentrations of each component at M Extract (0,23, 0.73, 0.04) Raffinate (0.13, 0.02, 0.85)

23.3 Equilibrium diagram

For extraction of concentrated solutions,

✓ There are cases where the solvent is only partially miscible with both the other components (Type II)

- √ tie lines and slope
- Concentrations of each component at M

Extract (?, ?, ?)
Raffinate (?, ?, ?)

✓ Is separation easier?

23.3 McCabe-Thiele Method

- For cascade-like extraction, the number of ideal stages can be determined by using the graphical method.
 - ✓ The equilibrium data are shown on a rectangular graph, which ends at the plait point.
 - 1) Draw the eq. line
 - 2) Determine the terminal points (x_a, y_a) , (x_b, y_b)
 - Determine one or more intermediate points using MB equations.
 - 4) Use triangular drawing to figure out the number of ideal stages.

23.3 Acetone recovery

Ex. 23.3. A countercurrent extraction plant is used to extract acetone (A) from its mixture with water by means of methyl isobutyl ketone (MIK) at a temperature of 25 °C. The feed consists of 40% acetone and water. Pure solvent equal in mass to the feed is used as the extracting liquid. How many ideal stages are needed to extract 99% of the acetone fed? What is the extract composition after removal of the solvent? (Homework)

반류 추출 공장에서 물과 아세톤의 혼합물로부터 아세톤을 추출하는데 25°C의 MIK를 이용한다. 원료는 40%의 아세톤과 60%의 물로 구성되어 있고, 원료와 같은 질량의 순수 용매를 추출에 쓰고 있다. 다음 쪽에 첨부된 3상도를 이용하여 99%의 순도가 되도록 아세톤을 추출하는데 필요한 이상단 수를 계산하여라. 또한 용매를 제거한 후의 추출물의 조성을 계산하여라.

23.3 Extraction using reflux

- Reflux can be used to improve recovery.
 - ✓ Type II systems can especially benefit from using reflux.

Distillation	Extraction
Vapor flow in cascade V	Extract flow in cascade V
Liquid flow in cascade L	Raffinate flow in cascade L
Overhead product D	Extract product D
Bottom product B	Raffinate product B
Condenser	Solvent separator
Bottom-product cooler	Raffinate solvent stripper
Overhead-product cooler	Extract solvent stripper
Heat to reboiler q,	Solvent to cascade s_B
Heat removal in condenser q _c	Solvent removal in separator s
Reflux ratio $R_D = L_a/D$	Reflux ratio $R_D = L_a/D$
Rectifying section	Extract-enriching section
Stripping section	Raffinate-stripping section

23.3 Reflux ratio & number of p

- The same relationship holds between the reflux ratio and the number of stages needed.
 - ✓ At the minimum reflux ratio, ?? stages are needed whereas ?? stages are needed at the total reflux.

