

Mass transfer

Lecture 02: Equilibrium-stage Op.

Jamin Koo 2019. 9. 5

Learning objectives

- Understand how cascades allow effective, continuous exchange of matter across the two streams in a qualitative manner.
- Become competent in analyzing and designing multi-stage distillation column, at least for 2component systems.
- Comprehend how the tray shape and structure affect mass transfer between the two phases.

Today's outline

Equipment for stage contacts

- √ cascades
- √ distillation vs leaching

Principles of stage processes

- ✓ Terminology
- ✓ Material balances
- √ Number of ideal stages
- ✓ Absorption factor method for calculating # of ideal stages

20.1 Introduction

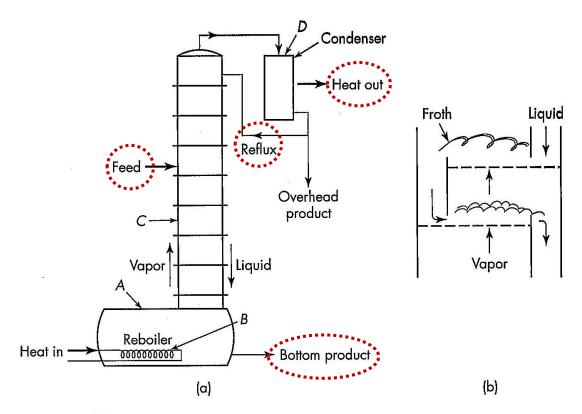
 Cascades: multi-stage system where two streams continuously move counter-currently, are mixed and then separated

Helpful online video clips

Khan Academy, Simple and fractional distillations:

https://www.youtube.com/watch?v=3pL2X-8-eVk&t=506s

• Andreas Pfennig, 009 TUO - distillation - distillation cascade:


https://www.youtube.com/watch?v=ITM2ibACjME

Sneha Bharat, Distillation column:

https://www.youtube.com/watch?v=BaBMXgVBQKk

20.1 Cascades in distillation

- Hypothetical equipment schematic
 - ✓ rectifying vs stripping/enriching section

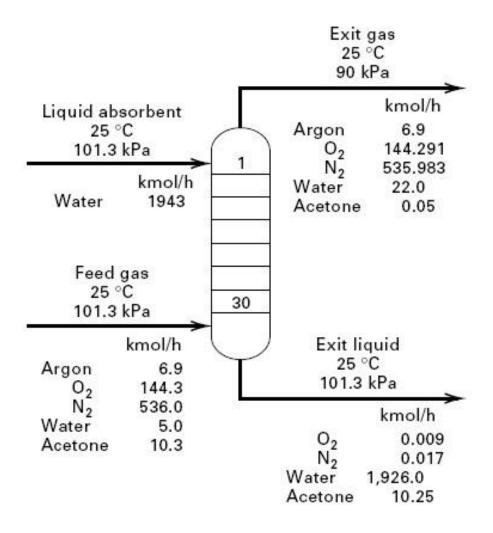


FIGURE 20.1

(a) Reboiler with fractionating column: A, reboiler; B, heating element; C, column; D, condenser. (b) Detail of sieve plate.

20.1 Cascades in distillation

Example process flowsheet

20.2 Cascades in leaching

- Hypothetical equipment schematic
 - ✓ Extracts soluble material from the solid mixture using liquid solvent

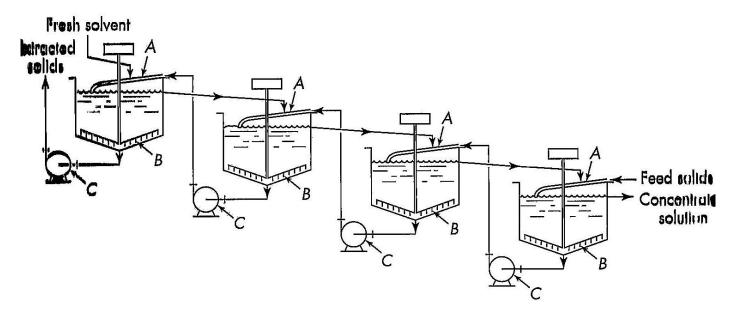
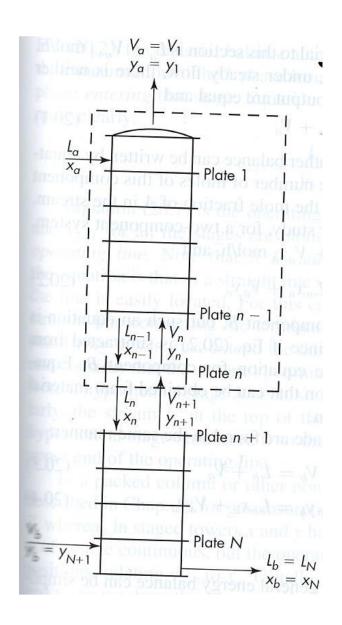


FIGURE 20.2

Countercurrent leaching plant: A, launder; B, rake; C, slurry pump.

20.2 Principles: terminology

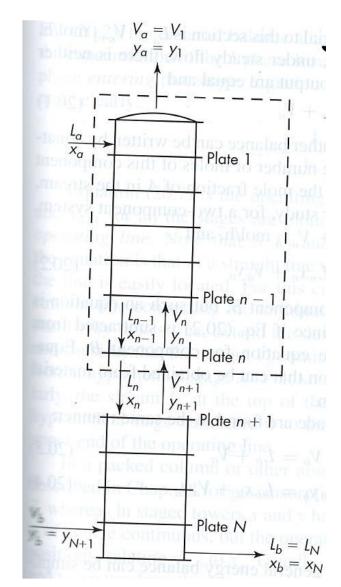

V vs L phase

Numbering of stages

✓ Start from where the L phase enters, and increases serially

• Fractions (x_i, y_i)

✓ mole fractions are commonly used for distillation while mass fractions are often used for extraction.

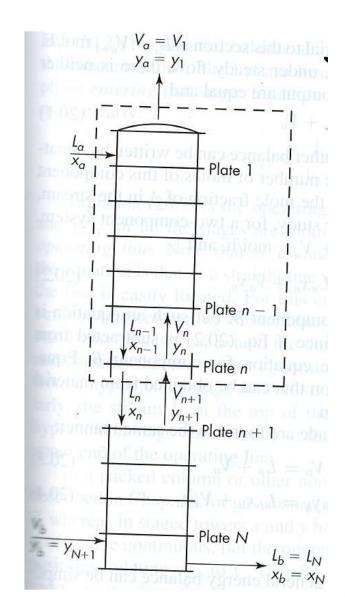


20.2 Material balances

From the first to nth stage,

✓ at steady state, without chemical rxn, $L_a + V_{n+1} = L_n + V_a$ $L_a x_a + V_{n+1} \ y_{n+1} = L_n x_n + V_a y_a$

- ✓ the above is for a 2-component system
- ✓ how about the eqn. for the other comp.?


20.2 Energy balances

From the first to nth stage,

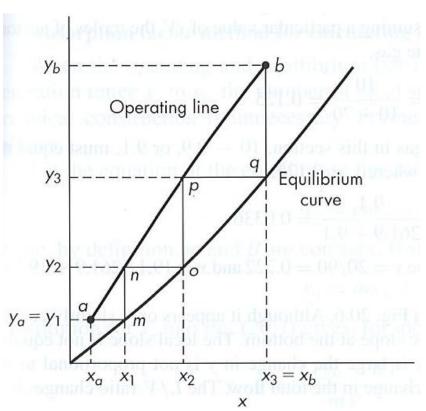
- ✓ Simplification is possible if you neglect mechanical potential and kinetic energy
- ✓ for adiabatic, workless process,

$$L_a H_{L,a} + V_{n+1} H_{v,n+1} = L_n H_{L,n} + V_a H_{v,a}$$
$$L_a x_a + V_{n+1} y_{n+1} = L_n x_n + V_a y_a$$

- ✓ the above is for a 2-component system
- ✓ Homework: derivation

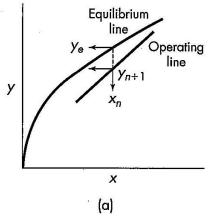
20.3 Operating line diagram

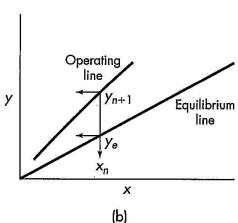
 Graphical methods based on material balances and equilibrium can be used for many 2-component systems.


Compositions of 2 phases are represented in a 2D graph:

✓ Rewrite the mat'l balance eqn for a component as in below:

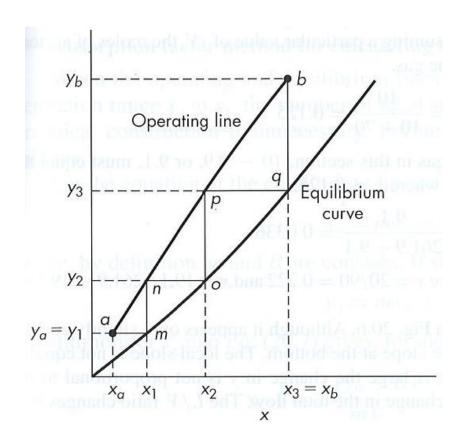
$$y_{n+1} = \frac{\dot{L_n}}{V_{n+1}} x_n + \frac{V_a y_a - L_a x_a}{V_{n+1}}$$


✓ the above gives the operating line as shown on the right; is it always a line?

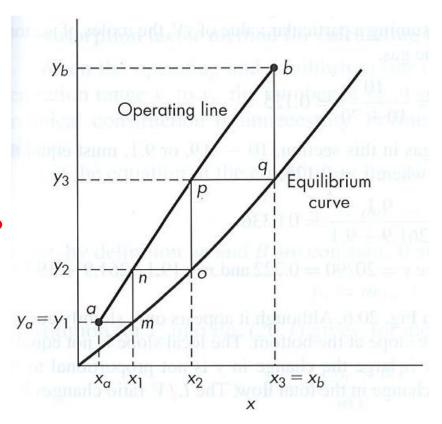

✓ What does the equilibrium curve represent?

20.3 Operating line diagram

 The position of the operating line relative to the equilibrium line determines the direction of mass transfer and how many stages are needed for separation.



- ✓ Discussion and answer:
 - o What happens to the component with the lower bp in the stage?
 - o Is this the rectifying or stripping section?
 - o What is the relationship between the slope of operating line and number of stages needed?

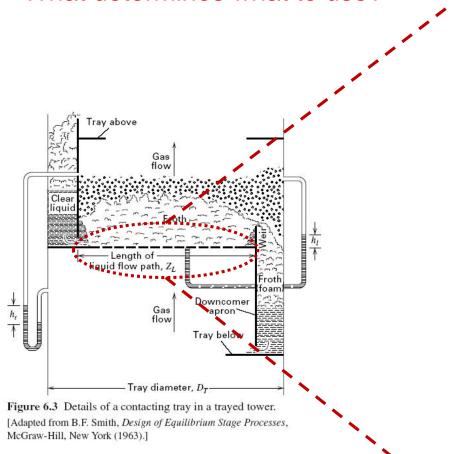

20.3 Ideal contact stages

- The V phase leaving the stage is in equilibrium with the L phase leaving the same stage.
 - ✓ stage/plate efficiency is used to correct for non-ideality

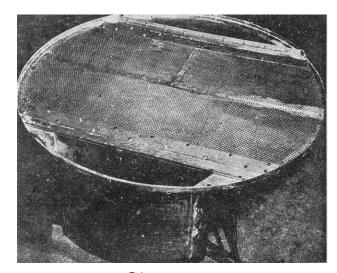
20.3 # of ideal contact stages

- How many ideal stages are needed to convert y_b to y_a and x_a to x_b simultaneously?
 - \checkmark for given y_a , x_a is found.
 - ✓ If ideal, move to m. Why?
 - ✓ In the subsequent stage, y_2 is found by moving to n. Why?
 - ✓ Repeat *these motions* until the target y_b is reached.
 - ✓ How many stages were needed?
 - ✓ How about for a rectifying section? Differences?

20.3 McCabe-Thiele method


- This graphical method was first used to find the number of ideal stages in distillation columns, and is known as McCabe-Thiele method.
 - ✓ What if the end point is not exactly met?

Ex. 20.1 By means of a plate column, acetone is absorbed from its mixture with air in a nonvolatile absorption oil. The entering gas contains 30 mol% acetone, and the entering oil is acetone-free. Of the acetone in the air, 97% is to be absorbed, and the concentrated liquor at the bottom is to contain 10% acetone. The equilibrium relationship is $y_e = 1.9x_e$. Plot the operating lines to determine the number of ideal stages. (**Homework**)


20.4 Equipment at glance

How do these trays look like?

✓ What determines what to use?

Perforated tray

Sieve tray

20.4 Equipment at glance

- The choice of tray type is related to the preferred vaporliquid flow regimes.
 - √ major parameters: mixing, efficiency, contact, flowrate

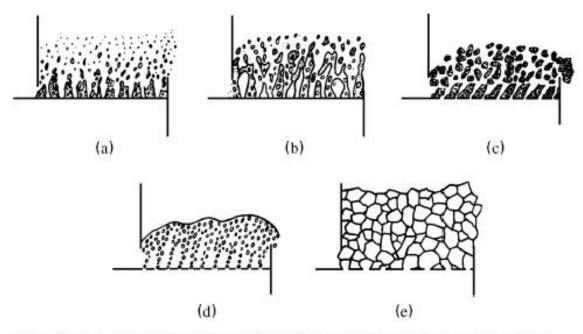
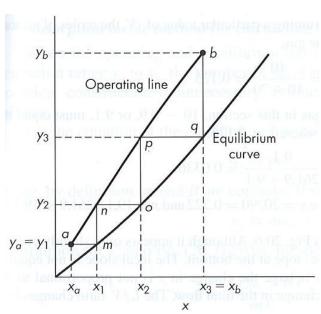


Figure 6.4 Possible vapor-liquid flow regimes for a contacting tray: (a) spray; (b) froth; (c) emulsion; (d) bubble; (e) cellular foam.

[Reproduced by permission from M.J. Lockett, *Distillation Tray Fundamentals*, Cambridge University Press, London (1986).]


20.5 Absorption factor method

- It can be used when both operating and equilibrium lines are straight.
 - ✓ Equilibrium line: $y_n = mx_e + B$ $\rightarrow y_n = mx_n + B$
 - ✓ Operating line: substitution to the mat'l balance eqn. (p11) gives

$$y_{n+1} = \frac{L(y_n - B)}{mV} + y_a - \frac{Lx_a}{V}$$
 eqn. (20.10)

where absorption factor $A \equiv \frac{L}{m V}$ (ratio of the two slopes), and L and V are assumed to be constant

- ✓ Using A, the above eqn. can be rewritten $y_{n+1} = A y_n A(m x_a + B) + y_a$ $= A y_n Ay_a^* + y_a$
- ✓ what is the difference between y_a^* and y_a ?

20.5 Kremser equation

Using the eqn, one can calculate yns as follows:

$$y_2 = y_a(1+A) - Ay_a^*$$

$$y_3 = y_a(1+A+A^2) - y_a^*(A+A^2)$$

$$y_{n+1} = y_a(1+A+\dots+A^n) - y_a^*(A+A^2+\dots+A^n)$$

✓ For the entire cascades (N stages) where $y_{n+1} = y_{N+1} = y_b$,

$$y_b = y_a(\frac{1-A^{N+1}}{1-A}) + y_a^*(\frac{A-A^{N+1}}{1-A})$$
 eqn. (20.17)

where absorption factor $A \equiv \frac{L}{mV}$ (ratio of the two slopes)

✓ The above eqn is called as Kremser equation.

20.5 Calculation of N – V phase

For the nth stage,

$$y_b = A y_N - Ay_a^* + y_a = A y_b^* - Ay_a^* + y_a \rightarrow y_a = y_b - A(y_b^* - y_a^*)$$

✓ Using the above eqn as well as eqn. 20.17, you can solve for N:

$$N = \frac{\ln[(y_b - y_b^*)/(y_a - y_a^*)]}{\ln A} = \frac{\ln[(y_b - y_b^*)/(y_a - y_a^*)]}{\ln[(y_b - y_a)/(y_b^* - y_a^*)]}$$

- ✓ What if the two lines are parallel, i.e., A = 1?
- ✓ What if the operating line sits below the equilibrium line? (recommended homework)

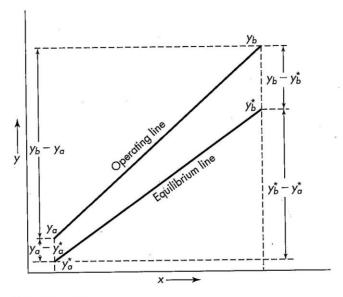


FIGURE 20.8 Concentration differences in Eq. (20.24).

20.5 Calculation of N – L phase

For the nth stage,

$$\checkmark N = \frac{\ln[(x_a - x_a^*)/(x_b - x_b^*)]}{\ln S} = \frac{\ln[(x_a - x_a^*)/(x_b - x_b^*)]}{\ln[(x_a - x_b)/(x_a^* - x_b^*)]}$$

where $S \equiv \frac{1}{A} = \frac{m V}{L}$ and is called the **stripping factor**

✓ What if S = 1?

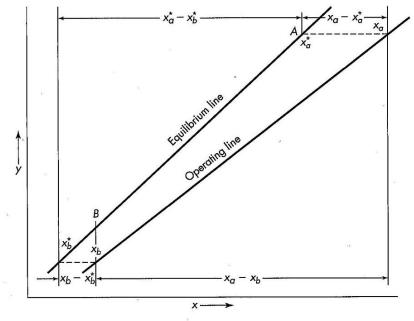


FIGURE 20.9 Concentration differences in Eq. (20.28).

20.5 Multi-stage column design

- **Ex. 20. 2**. Ammonia is stripped from a dilute aqueous solution by countercurrent contact with air in a column containing seven sieve trays. The equilibrium relationship is $y_e = 0.8x_e$, and when the molar flow of air is 1.5 times that of the solution, 90% of the ammonia is removed.
- (a) How many ideal stages does the column have and what is the stage efficiency?
- (b) What % removal would be achieved if the air rate were increased to 2.0 times the solution rate?

(homework)

20.5 Column Design

The design goals include the following:

- ✓ Maximize separation;
- ✓ Minimize manufacturing and installation cost;
- ✓ Minimize energy-operating cost;
- ✓ Minimize maintenance cost;
- ✓ Provide operating flexibility