

Mass transfer

Lecture 16: Multicomponent distillation

Jamin Koo 2019, 11, 28

Learning objectives

- Understand how equilibrium constraints and material balance equations are used in analyzing multicomponent distillation.
- Use computational methods to estimate number of plates, reflux ratio, and other parameters for designing a fractionating column.

Today's outline

Phase equilibria

- ✓ Distribution coefficient
- ✓ Bubble point (bp), and due point (dp) calculation

Flash distillation

Fractionating column

- Minimum number of plates N
- Minimum reflux ratio R
- Material balance

22.1 Distribution coefficients

Distribution coefficient (or K factor):

$$K_i \equiv y_{i,e}/x_{i,e}$$

where $y_{i,e}$ and $x_{i,e}$ are the liquid and gas mole fraction of component i in equilibrium with others.

✓ For ideal mixtures,

$$p_{i} = x_{i} P'_{i}$$

$$y_{i} = \frac{p_{i}}{P}$$

$$K_{i} = \frac{x_{i} P'_{i}}{P x_{i}} = \frac{P'_{i}}{P}$$

where p_i and P'_i are partial pressure and vapor pressure of component i (difference between the two? Temp. dependence)

- ✓ Applicability of Raoult's law?
- ✓ The eqn for K factor is not applicable at high pressures (> 20 atm) compressibility effects.

22.1 Bp & dp estimation

• Bubble point and due point of ideal mixtures (*N* components) can be calculated by the following procedure:

Why do we need this information?

- (1) Assume a temperature and total pressure (x_i are provided)
- (2) Obtain values of K_i for each component using literature.
- (3) If the assumed temperature is indeed the bubble point (why not dp), $\sum_{i=1}^{N} y_i = \sum_{i=1}^{N} K_i \ x_i = 1$
- (4) If the sum is larger than 1, lower/higher T is needed, and vice versa.
- (5) For dew point, repeat 1-4 with the equation in below for the step 3: $\sum_{i=1}^{N} x_i = \sum_{i=1}^{N} y_i / K_i = 1$

22.2 Flash distillation

Mass balance dictates the following relationship:

$$x_{F,i} = f y_{D,i} + (1 - f) x_{B,i}$$

✓ Assuming that the two phases are in equilibrium,

$$\frac{y_{D,i}}{x_{B,i}} = K_i = \frac{1}{f} \left(\frac{x_{F,i}}{x_{B,i}} + f - 1 \right)$$

✓ Just like for the bp/dp estimation, we can solve the eqn iteratively to get final values of *T* and *K*_is:

$$\sum_{i=1}^{N} x_{B,i} = 1 = \sum_{i=1}^{N} \frac{x_{F,i}}{f(K_i - 1) + 1}$$

22.3 Fractionating column

- Unlike in the binary case, we assume # of plates to calculate compositions.
 - ✓ Because of the difficulties and non-idealness, it is almost impossible to specify compositions of all chemicals.
 - ✓ Instead, we identify two key components—light key (LK), and heavy key (HK) compound.
 - ✓ One usually chooses the two adjacent (ranked in terms of volatility) chemicals as LK and HK; this practice is called sharp separation.
 - ✓ One usually specifies $x_{D,H}$ and $x_{B,L}$ for design. The two are usually small/high in value.

22.3 Minimum N

• Minimum number of plates is calculated when R_{Dm} is ?

$$N_{min} = \frac{\ln \left[\frac{(\frac{x_{D,i}}{x_{B,i}})}{\frac{x_{D,j}}{(x_{B,j})}} \right]}{\ln \alpha_{ij}} - 1$$

What is the eqn.'s name and are the underlying assumptions?

✓ If the α_{ij} changes significantly (> 10%) throughout the column, use $\bar{\alpha}_{ij} = \sqrt[3]{\alpha_{D,ij}\alpha_{F,ij}\alpha_{B,ij}}$

22.3 Minimum R_{Dm}

- Minimum R_{Dm} is calculated when infinite number of theoretical plates are needed.
 - ✓ We can calculate the value using the equilibrium curve, and operating line between the key components:

$$R_{Dm} = \frac{x_D - y'}{y' - x'}$$

where x' and y' are the values at the intersection of feed line and eq curve, respectively.

✓ If key components make up more than 90% of the feed (saturate liquid), the following eqn can be used:

$$\frac{L_{min}}{F} = \frac{(Dx_{D,i}/Fx_{B,i}) - \alpha_{ij}(Dx_{D,j}/Fx_{F,j})}{\alpha_{i,i} - 1}$$

what are physical meaning of the fractions?

22.3 Material balance

- N needed for a specified separation at a selected R can be determined by Lewis-Matheson method.
 - ✓ The amount of all components in the products must be specified.
 - 1. For the top plate, determine T and $x_{i,1}$'s using dp estimation eqn.
 - 2. Use material balance eqn to calculate y_i 's for plate 2:

$$y_{i,2} V_2 = L_1 x_{i,1} + D x_{i,D}$$

- 3. Can assume equimolar flow or use the enthalpy balance.
- 4. Repeat the steps 2-3 until the feed plate is reached.
- 5. Check the feed composition. If different, adjust parameters such as R_{Dm} and/or compositions of the products.
- 6. Repeat the steps 1-6 starting from the bottom plate to the feed.