

Mass transfer

Lecture 17: Mass transfer coefficients

Jamin Koo 2019. 11. 14

Learning objectives

 Be able to apply an appropriate (empirical) relation(s) in analyzing mass transfer along different types of fluid flow.

Today's outline

Mass transfer coefficients

- ✓ experimental measures
- ✓ Dimensional analysis
- ✓ Flow inside pipes, and Ex. 17.2
- √ Flow past single spheres
- ✓ Penetration theory, and flow of drops & bubbles

17.3 Dimensional analysis

 One can expect that the mass transfer coefficient k will depend on diffusivity and other variables affecting flow.

$$k=f(D_v,D,u,\mu,\rho)$$
 where units are k [cm/s], D_v [cm²/s], D [cm], u [cm/s], μ [g/m/s], ρ [g/m³]

- ✓ Among these, **Sherwood number** (Sh) is used to characterize k. $Sh = \frac{k L}{D_{AB}}$ where k, L, and D_{AB} are mass transfer coefficient (m/s), characteristic length (m), and diffusivity (m²/s)
- \checkmark **j**_M **factor** is sometimes used instead to estimate k:

$$j_M \equiv \frac{k_c}{u} \left(\frac{\mu}{\rho D_v}\right)^{\frac{2}{3}}$$

17.3 Flow inside pipes

For turbulent-flow mass transfer to pipe walls,

✓ the following, simple relation gives a fairly good estimation of k:

$$Sh = 0.023 Re^{0.8} Sc^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

✓ Often, $\frac{\mu}{\mu_w}$ ~1.0. For gas-phase mass transfer,

$$j_M = \frac{k_y R T}{P u} Sc^{2/3}$$

✓ For Schmidt numbers between 0.6 and 2.5, the eqn. in below is slightly more accurate:

$$Sh = 0.023 Re^{0.81} Sc^{0.44}$$

✓ For higher Schmidt numbers (430 to 100,000),

$$Sh = 0.0096 Re^{0.913} Sc^{0.346}$$

17.3 Two phase mass transfer

- **Ex. 17.5.** (a) What is the effective thickness of gas film for the evaporation of water into air in a 50 mm diameter wetted-wall column at *Re* of 10,000 and a temperature of 40 °C?
- (b) Repeat the calculation for the evaporation of ethanol under the same conditions. At 1 atm the diffusivities are 0.288 cm²/s for water in air and 0.145 cm²/s for ethanol in air.

17.3 Flow past single spheres

 The relationship between Sh and Re changes as Re increases from 0 to high numbers.

- ✓ Sh approaches ? as Re approaches 0.
- ✓ For Re up to 1,000,

$$Sh = 2.0 + 0.6Re^{1/2} Sc^{1/3}$$

✓ The slope of the graph gradually increases for Re beyond 1,000.

17.3 Penetration theory

 The change in concentration with distance and time is governed by Fick's second law:

$$\frac{\partial C_A}{\partial t} = D_v \frac{\partial^2 C_A}{\partial h^2}$$

- ✓ The boundary conditions dictate $c_A = c_{AO}(t=0)$, $c_A = c_{Ai}(b=0; t>0)$
- ✓ The instantaneous flux at any given time t is governed by

$$J_A = \sqrt{\frac{D_v}{\pi t}} (c_{Ai} - c_A)$$

 \checkmark The average flux over the time interval 0 to t_{τ} is

$$\overline{J_A} = \frac{1}{t_T} \int_0^{t_T} J_A \, dt = (c_{Ai} - c_A) \int_0^{t_T} \sqrt{\frac{D_v}{\pi t}} \, dt = 2 \sqrt{\frac{D_v}{\pi t_T}} (c_{Ai} - c_A)$$

✓ Combination w/ k_c equation gives:

$$\overline{k_c} = 2\sqrt{\frac{D_v}{\pi t_T}}$$

✓ Depth of penetration, defined as the distance at which Δc_A is 1%, becomes 3.6 $\sqrt{D_v t_T}$.

17.3 Drops and bubbles

- For a low- μ -drop falling through a viscous liquid w/out surfactants,
 - ✓ Mass transfer between fluid and drop is governed by ? theory:

$$\overline{k_c} = 2\sqrt{\frac{D_v u_0}{\pi D_p}}$$

where D_p and u_0 are the drop-diameter, and velocity of the drop; the effective time for mass transfer is ??

✓ Sherwood number becomes as follows:

$$Sh = \frac{kD_v}{D} = 2\sqrt{\frac{D_v u_0}{\pi D_p}} \frac{D_p}{D_v} = \frac{2}{\sqrt{\pi}} \sqrt{\frac{\rho u_0 D_p}{\mu}} \sqrt{\frac{\mu}{\rho D_v}} = 1.13Re^{1/2} Sc^{1/2}$$

✓ It is difficult to predict $\overline{k_c}$ for a practical application; volumetric mass-transfer coefficient $k_c a$ [s⁻¹], which is obtained experimentally, is often used instead