

Mass transfer

Lecture 12: *Film theory*

Jamin Koo 2019. 11. 11

1

Learning objectives

- **Understand the assumptions underlying film theory and be able to apply it when analyzing mass transfer across the interface.**
- **Become motivated in executing the team project that requires design of a separation process.**

Today's outline

• **Film theory**

- \checkmark Basic concepts
- \checkmark Film theory and assumptions
- \checkmark Two-film theory

• **Team project**

- **√ Overview**
- \checkmark Team formation
- \checkmark Schedule
- \checkmark Grading

17.2 Basic concepts

• **In a common mass transfer operation, turbulent flow dominates to increase the rate of transfer.**

 \checkmark Mass transfer film thickness B_T is not known.

- **Mass transfer to the fluid interface is also unsteady.**
	- \checkmark Both ΔC and N_{*A*} vary continuously throughout the process.
- **Mass transfer coefficient** *k* **is used instead for estimating transfer rates:**
	- \checkmark For concentration gradients, $k_c = \frac{J_A}{C}$ $C_{Ai}-C_{A}$ $\left[\frac{mol}{\cos 2m\epsilon}\right]$ s cm² mol/cm³ $=$ cm/s]

 \checkmark For a steady-state, equimolal diffusion in a stagnant film,

$$
k_c = \frac{J_A}{c_{Ai} - c_A} = \frac{D_v (c_{Ai} - c_A)}{B_T} \frac{1}{(c_{Ai} - c_A)} = \frac{D_v}{B_T}
$$

17.2 Film theory

• **It assumes that there is a stagnant, thin film of a certain thickness at the interface.**

 \checkmark This film mostly belongs to the laminar layer, if not all.

 \checkmark Mass transfer is mainly by diffusion.

 \checkmark ΔC is almost linear.

 \checkmark *C*_{*A*} is not the maximum value but instead the *flow-weighted average* assuming a thorough mixing.

17.2 Two-film theory

- **In many separation processes, molecules diffuse from one phase into another.**
	- \checkmark The overall mass transfer is affected by diffusion in both phases.
	- \checkmark Assuming equilibrium at the interface, there is usually discontinuity of concentration between the two phases.

FIGURE 17.3

Concentration gradients near a gas-liquid interface: (a) distillation; (b) absorption of a very soluble gas.

17.2 Two-film theory

• **The rate of transfer to the interface is set equal to the rate of transfer from the interface.**

$$
r = k_x(x_A - x_{Ai}) = k_y(y_{Ai} - y_A) = K_y(y_A^* - y_A)
$$

where y_A^* is the vapor composition in equilibrium with ?

 K _{*y*} can be calculated as follows:

$$
\frac{1}{K_y} = \frac{y_A^* - y_A}{r} = \frac{y_A^* - y_{Ai}}{r} + \frac{y_{Ai} - y_A}{r} = \frac{y_A^* - y_{Ai}}{k_x(x_A - x_{Ai})} + \frac{y_{Ai} - y_A}{k_y(y_{Ai} - y_A)}
$$
\n
$$
\frac{1}{K_y} = \frac{m}{K_x} + \frac{1}{k_y}
$$

 \checkmark The term $\frac{1}{\checkmark}$ K_{y} denotes *overall resistance to* mass transfer while the latter two terms are ?

