

Mass transfer

Lecture 12: Film theory

Jamin Koo 2019. 11. 11

Learning objectives

- Understand the assumptions underlying film theory and be able to apply it when analyzing mass transfer across the interface.
- Become motivated in executing the team project that requires design of a separation process.

Today's outline

• Film theory

- ✓ Basic concepts
- \checkmark Film theory and assumptions
- ✓ Two-film theory

Team project

- ✓ Overview
- ✓ Team formation
- ✓ Schedule
- ✓ Grading

17.2 Basic concepts

 In a common mass transfer operation, turbulent flow dominates to increase the rate of transfer.

✓ Mass transfer film thickness B_T is not known.

- Mass transfer to the fluid interface is also unsteady.
 - ✓ Both ΔC and N_A vary continuously throughout the process.
- Mass transfer coefficient k is used instead for estimating transfer rates:
 - ✓ For concentration gradients, $k_c = \frac{J_A}{C_{Ai} C_A} \left[\frac{mol}{s \ cm^2 \ mol/cm^3} = cm/s\right]$

✓ For a steady-state, equimolal diffusion in a stagnant film,

$$k_{c} = \frac{J_{A}}{C_{Ai} - C_{A}} = \frac{D_{v}(C_{Ai} - C_{A})}{B_{T}} \frac{1}{(C_{Ai} - C_{A})} = \frac{D_{v}}{B_{T}}$$

17.2 Film theory

 It assumes that there is a stagnant, thin film of a certain thickness at the interface.

✓ This film mostly belongs to the laminar layer, if not all.

 \checkmark Mass transfer is mainly by diffusion.

 $\checkmark \Delta C$ is almost linear.

 \checkmark C_A is not the maximum value but instead the *flow-weighted average* assuming a thorough mixing.

17.2 Two-film theory

- In many separation processes, molecules diffuse from one phase into another.
 - \checkmark The overall mass transfer is affected by diffusion in both phases.
 - ✓ Assuming equilibrium at the interface, there is usually discontinuity of concentration between the two phases.

FIGURE 17.3

Concentration gradients near a gas-liquid interface: (*a*) distillation; (*b*) absorption of a very soluble gas.

17.2 Two-film theory

• The rate of transfer to the interface is set equal to the rate of transfer from the interface.

$$r = k_x(x_A - x_{Ai}) = k_y(y_{Ai} - y_A) = K_y(y_A^* - y_A)$$

where y_A^* is the vapor composition in equilibrium with ?

 \checkmark K_v can be calculated as follows:

$$\frac{1}{K_{y}} = \frac{y_{A}^{*} - y_{A}}{r} = \frac{y_{A}^{*} - y_{Ai}}{r} + \frac{y_{Ai} - y_{A}}{r} = \frac{y_{A}^{*} - y_{Ai}}{k_{x}(x_{A} - x_{Ai})} + \frac{y_{Ai} - y_{A}}{k_{y}(y_{Ai} - y_{A})}$$
$$\frac{1}{K_{y}} = \frac{m}{k_{x}} + \frac{1}{k_{y}}$$

✓ The term $\frac{1}{K_y}$ denotes *overall resistance to* mass transfer while the latter two terms are ?

