Reaction and Separation

1. Excel을 이용한 수성기체 전환 반응 문제

1단계 – 수식 입력

	A	В	С	D		E				
1	A	В	С	D		E				
2	Species	Start	End			Mole Fraction				
3	CO	1	0.075861343	=B	3-\$C\$8	0.037930672				
4	H2O	1	0.075861343	=B	4-\$C\$8	0.037930672				
5	CO2	0	0.924138657	=B	5+\$C\$8	0.462069328				
6	H2	0	0.924138657	=B	6+\$C\$8	0.462069328				
7	Total	2	2.000000	=S	UM(C3:C6)	1.0000000	_	-	-	-
8		Reacting	0.924138657					С	D	E
9		Equilibrium	0.000233984	=1	48.4-C5*C6/(C3*C4)		C	D	E
10		Equation						End		Mole Fraction
			-	5	0		1	0.075861343	=B3-\$C\$8	0.037930672
2단	계 - 목표값	찾기		4	H2O		1	0.075861343	=B4-\$C\$8	0.037930672
				5	CO2		0	0.924138657	=B5+\$C\$8	0.462069328
				6	H2		0	0.924138657	=B6+\$C\$8	0.462069328
				7	Total		2	2.000000	=SUM(C3:C6)	1.0000000
				8		Reacting		0.924138657		
				9		Equilibrium		0.000233984	=148.4-C5*C6/((C3*C4)
				10		Equation		목표값 찾기	? <mark>×</mark>	
				11					(AC40)	
				12				우역 별(<u>E</u>)· 차도 가(\)·	10 0	
				13 14				꽃는 값(⊻)· 가을 비끈 세(⊂)·	8404	
									φ0φ0 [<u>Ε</u>	a)
				15				확인	취소	
			10							

1. Excel을 이용한 수성기체 전환 반응 문제

3단계 - 목표값 찾기

4	A	B	С	D	E
1	A	В	С	D	E
2	Species	Start	End		Mole Fraction
3	CO	1	0.075861343	=B3-\$C\$8	0.037930672
4	H2O	1	0.075861343	=B4-\$C\$8	0.037930672
5	CO2	0	0.924138657	=B5+\$C\$8	0.462069328
6	H2	0	0.924138657	=B6+\$C\$8	0.462069328
7	Total	2	2.000000	=SUM(C3:C6)	1.0000000
8		Reacting	0.924138657		
9		Equilibrium	0.000233984	=148.4-C5*C6/((C3*C4)
10		Equation	목표값 찾기 상태	? <u>-</u> 2	×)
11					
12			답을 찾았습니다.	★기 [단계(S)	
13			목표값: 0	일시 중지(F	P)
14			현재값: 0,000233	3984	
15			2	1인 취소	
16					

1. Excel을 이용한 수성기체 전환 반응 문제

4단계 – Nonstoichiometric Input(각 몰을 1 1.8 0.3 0.1)

	A	В	С	D	E
1	A	В	С	D	E
2	Species	Start	End		Mole Fraction
3	CO	1	0.011641541	=B3-\$C\$8	0.003637982
4	H2O	1.8	0.811641541	=B4-\$C\$8	0.253637982
5	CO2	0.3	1.288358459	=B5+\$C\$8	0.402612018
6	H2	0.1	1.088358459	=B6+\$C\$8	0.340112018
7	Total	3.2	3.200000	=SUM(C3:C6)	1.0000000
8		Reacting	0.988358459		
9		Equilibrium	-8.60071E-06	=148.4-C5*C6/((C3*C4)
10		Equation	목표간 차기 상태	- ?	×
11					
12			젤 U9에 대한 값 답을 찾았습니다.	젖기 <u>단계(S)</u>	
13			목표값: 0	일시 중지(F	2)
14			현재값: -8,60071	1E-0	
15			Ž	1인 취소	
16					

2. MATLAB을 이용한 수성기체 전환 반응 문제

1단계 – m-file 만들기(equil_eq.m)

MATLAB Editor/Debugger - [C:\MATLAB\bin\equil_eq.m*] 🔲 🗖 🔀
💬 File Edit View Debug Window Help – 🗗 🗙
🗅 🚅 🖶 🔏 💡 🛃 🗟 🕸 🖻 🗐 태월 Stack:
% equil_eq
function y=equil_eq(x)
COin=1.1;
H2Oin=1.2
CO2in=0.1;
H2in=0.2
Kequil=148.4;
CO=COin-x
H2O=H2Oin-x
CO2=CO2in+x
H2=H2in+x
y=kequil-CO2+H2/(CO+H2O)

2단계 – 답 구하기

📣 MATLAB Command Window
<u>F</u> ile <u>E</u> dit <u>W</u> indow <u>H</u> elp
D 🗲 🔏 🖻 🖻 🗩 📕 🙎
?equil_eq(0.9)
CO =
0.2000
H20 =
0.3000
CO2 =
1
H2 =
1.1000
y =
130.0667
ans =
130.0667

2. MATLAB을 이용한 수성기체 전환 반응 문제

3단계 – m-file에 ' ; ' 삽입하기

MATLAB Editor/Debugger - [C:\MATLAB\bin\	equil_eq.m+] 🔳 🗖 🔀	
📴 Eile Edit View Debug Window Help	_ @ ×	
	Stack:	
% equil_eq function y=equil_eq(x) COin=1.1; H2Oin=1.2 CO2in=0.1; H2in=0.2 Kequil=148.4; CO=COin-x; H2O=H2Oin-x; CO2=CO2in+x; H2=H2in+x: y=Kequil-CO2*H2/(CO*H2O):] 4단계 - Table 4.1로 변형하기	MATLAB Editor/Deb Eile Edit View Deb Coinel.; H2Oinel.; H2Oinel.; H2ine0.; H2ine0.; H2ine0.; H2O=H2Oin-x; H2O=H2Oin-x; H2=H2in+x; y=Kequil-CO2+H2/(CO	ugger - [C:\MATLAB\bin\equil_eq.m*] ug Window Help

2. MATLAB을 이용한 수성기체 전환 반응 문제

5단계 – 답 구하기

6단계 – m-file 만들기(Nonstoichiometric Input)

2. MATLAB을 이용한 수성기체 전환 반응 문제

7단계 – 답 구하기

D 🖻 🗴 🖻 🖻 🖻 📕 📍

?%run equil_eq_global global COin H2Oin CO2in H2in Kequil COin=1 H20in=1 CO2in=0 H2in=0 Kequil=148.4 x=fzero('equil_eq_global',0.5) COin = 1 H20in = 1 C02in = 0 H2in = 0 Kequil = 1.484000000000000e+002 x = 0.92413871189774

3. MATLAB을 이용한 여러 변수 연립방정식

1단계 – m-file 만들기(prob2.m)

🚰 MATLAB Editor/Debugger - [C:\MATLAB\bin\pr								
📅 File Edit View Debug Window Help								
%filename prob2.m								
function y2=prob2(p)								
% vector components of p are transferred to x and y for								
% convenience in remembering the equation								
x=p(1)								
y=p(2)								
% the components of the two equations are calculated								
v2(1)=10+x+3+v+v-3								
y2(2)=x+x-exp(y)-2								

3. MATLAB을 이용한 여러 변수 연립방정식

3단계 – 초기 추정값 p0를 이용하여 fsolve를 입력한다.(';' 삽입한다)

?p0=[0 0]		
p0 =		
0 0		
<pre>?z=fsolve('prob2',p)</pre>		
z =		
-1.4455 -2.4122		

4단계 – 답 구하기

?ans=feval('prob2',z) ans = 1.0e-004 * 0.6378 -0.3016

4. MATLAB을 이용한 여러 변수 연립방정식(fminsearch 함수 사용)

3단계 – m-file 만들기(';'삽입하고, 초기 추정값[1 1]로 부터 계산) – MATLAB 버전 변경(2010a)

+≣ ⊊≣ - 1.0 + ÷ 1.1 × ∞ ² ∞ ² 0	>> pO=[1 1]								
<pre>1 %filename prob3.m 2</pre>									
 3 - % vector components of p are transferred to x and y for 4 - % convenience in remembering the equation 	3 - % vector components of p are transferred to x and y for 4 - % convenience in remembering the equation 1 1								
5 - x = p(1) 6 - y = p(2)	>> xvec=fminsearch('prob3'	,pO)							
8 - f1 = 10 + x + 3 + y + y - 3	xvec =								
$\frac{y}{y^2} = \frac{12 + x + x - exp(y) - 2}{y^2 + sqrt}$	-1.4456 -2.4122								
		>> ans=feval('prob3',xvec)							
4단계 – 답 구하기(';'를 제거하고 함수 계산)		f1 =							
		-1.0120e-004							
		f2 =							
		5.1047e-006							
		ans =							
		1.0133e-004							

4. MATLAB을 이용한 여러 변수 연립방정식(fminsearch 함수 사용)

5단계 – m-file 만들기(format long 명령문 사용)

6단계 – 답 구하기(';'를 제거하고 함수 계산)

```
>> feval('prob3',xvec)
f1 =
    1.453059894629405e-012
f2 =
    -9.099387909827783e-013
ans =
```

```
1.714459582701096e-012
```

재순환 Stream이 있는 물질수지식

1. Excel을 이용한 물질수지식(암모니아 공정)

- 1단계 수식 입력(Stream1과 6을 합쳐 Stream2에 주입)
- 2-4단계 Stream3의 Nitrogen은 Stream2의 질소에 전환율을 곱하고, Hydrogen은 Nitrogen의

3배, Ammonia는 2배로 설정한다. 반응물은 음수, 생성물은 양수로 표시한다.

- 5단계 Stream4는 Stream2와 3의 합
- 6단계 Stream5는 98% Ammonia, 5% Nitrogen, Hydrogen은 Nitrogen의 3배

7단계 – Stream6은 각각 Nitrogen의 2배와 3배로 표시한다.

재순환 Stream이 있는 물질수지식

2. Excel을 이용한 물질수지식(평형전환율이 있는 암모니아 공정)

1단계 – 수식 입력

2단계 - 목표값 찾기(Conversion값을 변화시켜 Equation의 값을 0으로 만드는 것) - 해찾기를 이용

재순환 Stream이 있는 물질수지식

3. Excel을 이용한 물질수지식(상평형이 있는 암모니아 공정)

1단계 - 수식 입력

2단계 - 목표값 찾기(v값을 변화시켜 f(v)의 값을 0으로 만드는 것) - 해찾기를 이용

		1				Separator	\longrightarrow	
							Purge	
		Mixer		Reactor)	Flash Separato	\longrightarrow	
	Inlet		Out of Mixer	Reacting	Out of reactor		Product	
	Inlet	Recycle	Out of mixer	Reacting	Out of reactor	Recycle out of flash separator	Product out of flash separator	Purge
Nitrogen	100.00	270.80	370.80	-92.70	278.10	273.54	4.56	2.7354
Hydrogen	300.00	1968.51	2268.51	-278.10	1990.41	1988.39	2.02	19.8839
Ammonia	0.00	115.54	115.54	185.40	300.00	116.70	183.30	1.1670
CO2	1.00	3.80	4.80	0.00	4.80	3.84	0.96	0.0384
Total	400.00	2354.84	2754.84	-185.40	2568.51	2378.63	189.88	23.7863
		Conversion	0.25	t	v=	0.925839397		
	-1		Kiyalua	term1=	term2=	Patio		
Nitrogen	0 1092	-614/\$6\$19	N-Value 1 0	0.41142720	/ 51010071	0.001062421	0.022062705	0.115026216
Hydrogen	0.1005	-615/\$6\$19	4.0	60 44 43 5 2 60	73 21547200	0.825568005	0.023903793	0.836152302
Ammonia	0.1169	-616/\$6\$19	0.051	-0.1109/250	0121279/1	-0.012108529	0.010304200	0.040076001
CO2	0.0019	=617/\$6\$18	0.031	-0.00127150	0.37042021	-0.003432753	0.005048166	0.001615413
Total	1 0019	-01//90910	0.52	0.0012/139	f(y) =	-0.00000077	1 00187070	1 00186993
IOtai	1.0019				(0)-	0.0000077	1.0010/0/0	1.00100333