Lecture 7. Single Equilibrium Stages (3) [Ch. 4]

- Multicomponent Liquid–Liquid Systems
- Solid–Liquid Systems
 - Leaching
 - Crystallization
 - Liquid adsorption
- Gas-Liquid Systems
- Gas–Solid Systems
- Multiphase Systems
 - Vapor-liquid-solid system
 - Vapor-liquid-liquid system

Multicomponent Liquid-Liquid Systems

- Liquid-liquid extraction process with (1) quaternary and higher component mixtures and/or (2) two solvents
- Equilibria are very complex : no compact graphical way
 - ⇒ computer-assisted algorithm using activity coefficient equations

Vapor-Liquid Equilibria	Liquid-Liquid Equilibria
Feed, F	Feed, F + solvent, S
Equilibrium vapor, V	Extract, E (L ⁽¹⁾)
Equilibrium liquid, L	Raffinate, R (L ⁽²⁾)
Feed mole fraction, z _i	Mole fractions of combined F and S
Vapor mole fractions, y _i	Extract mole fractions, x _i ⁽¹⁾
Liquid mole fractions, x _i	Raffinate mole fractions, x _i ⁽²⁾
K-value, K _i	Distribution coefficient, K _{Di}
$\Psi = V / F$	$\Psi = E / (F + S)$

Solid-Liquid Systems

- Leaching (solid-liquid extraction)
 - Separation of multicomponent solid mixture by contacting the solid with a solvent that selectively dissolves some components
 - Diffusion in solids is very slow compared to diffusion in liquid
 - Complete separation of a solid phase from a liquid phase is virtually impossible

Crystallization

- Analogous to distillation
- Sharp phase separation is virtually impossible
- Liquid adsorption
 - The porous solid agent selectively adsorbs certain components of the liquid mixture on its exterior and interior surface
- Membrane-separation
 - A solid membrane absorbs and transports certain species of the liquid mixture

Leaching

- In an ideal equilibrium leaching stage,
- Overflow is free of solid
- None of the solid A is dissolved
- The composition of the underflow liquid phase is same as the composition of the overflow liquid

Applications

- Separation of metal from ore using acid
- Separation of soybean oil from soybean using hexane

Crystallization

• Crystallization of naphthalene (C₁₀H₈) in benzene (C₆H₆)

Liquid Adsorption

[Example] Adsorption of Phenol on Activated Carbon

One liter of an <u>aqueous solution</u> containing 0.010 mol of <u>phenol</u> is brought to equilibrium at 20°C with 5 g of <u>activated carbon</u>. Determine the <u>percent adsorption</u> of the phenol and equilibrium concentration of phenol on carbon.

Gas-Liquid Systems

- Vapor : a mixture of species, most or all of which are condensable
- Gas : a mixture for which the temperature is above the critical temperature of most or all of the species

 \rightarrow the components of a gas mixture are not easily condensed to a liquid

Estimation of the solubility in water by applying Henry's law

$$x_i = \left(\frac{1}{H_i}\right) y_i P$$

Gas-Solid Systems

- Sublimation & desublimation
 - Sublimation: a solid vaporizes into a gas phase without passing through a liquid state
 - Desublimation: one or more components (solutes) in the gas phase are condensed to a solid phase without passing through a liquid state
- Gas adsorption
 - One or more components of a gas mixture can be adsorbed on the surface of a solid adsorbent
 - Adsorption isotherm: (partial pressure of solute in the gas) vs. (concentration of adsorbate in the solid)

Vapor-Liquid-Solid Systems

- Example: vacuum evaporative crystallizer
 - The system pressure can be approximated by applying Raoult's law to the water in the liquid $P = P_{H_2O}^s x_{H_2O}$

A 5,000 lb batch of 20 wt% aqueous $MgSO_4$ solution is fed to a vacuum, evaporative crystallizer operating at 160°F. At this temperature, the stable solid phase is the monohydrate, with a $MgSO_4$ solubility of 36 wt%. 75% of the water is evaporated.

Pounds of water evaporated ?

Feed solution: $0.2 \times 5,000 = 1,000 \text{ lb MgSO}_4$ 5,000 - 1,000 = 4,000 lb H₂O Water evaporated: $0.75 \times 4,000 = 3,000 \text{ lb H}_2O$

Vapor-Liquid-Liquid Systems

- Example: mixture containing water and hydrocarbons
 → vapor phase, two liquid phases (HC-rich & water-rich)
- If the solubilities of water in the liquid HC phase and HCs in the water phase are negligible, and the liquid HC phase obeys Raoult's law

$$P = P_{H_2O}^s + \sum_{HCs} P_i^s x_i^{(1)}$$

Only one HC species present

More general cases,

$$P = P_{H_2O}^s + P \sum_{HCs} K_i x_i^{(1)}$$

More than one HC species present

