Lecture 6. Single Equilibrium Stages (2) [Ch. 4]

- Multicomponent Flash, Bubble–Point, and Dew–Point Calculations
 - Variables and equations in flash vaporization
 - Isothermal flash
 - Bubble and dew points
 - Adiabatic flash
- Ternary Liquid–Liquid Systems
 - Carrier A and solvent C mutually insoluble
 - Carrier A and solvent C partially soluble

Flash Vaporization

- Flash: a single-equilibrium-stage distillation in which a feed is partially vaporized to give a vapor richer in the more-volatile components than the feed
- If the equipment is properly designed, the vapor and liquid leaving the flash drum are in equilibrium

Single-Stage Equilibrium Operation

00.40

	V, y_{i}, H P_{ij}, T	• 2C + 5 equa	ations	Number of
		E	Equation	
		(1) $P_V = P_L$	(mechanical equilibrium)	1
	→	(2) $T_V = T_L$	(thermal equilibrium)	1
$F \qquad \swarrow$		(3) $y_i = K_i x_i$	(phase equilibrium)	С
$z_i Q$		$(4) Fz_i = Vy_i + Lx_i$	(component material balance)	С
\boldsymbol{u}_F		(5) $F = V + L$	(total material balance)	1
Γ_{F}		$(6) h_F F + Q = h_V V + h_V $	$h_L L$ (energy balance)	1
\mathbf{P}_{F}	T	$(7)\sum_{i} y_i - \sum_{i} x_i = 0$	(summations)	1
		1 1	$\mathscr{E} =$	2C + 5
	L, x_{i}, L	$K_i = K_i \{T_V,$	$K_i = K_i \{T_V, P_V, y, x\}$ $h_F = h_F \{T_F, P_F, z\}$	
	P_{I}, T	$h_V = h_V \{T_V,$	$h_V = h_V \{T_V, P_V, y\}$ $h_L = h_L \{T_L, P_L, x\}$	

• C + 5 degrees of freedom

• • •

Common Sets of Specifications

• C + 3 feed variables (F, T_F , P_F , z_i) are known \rightarrow 2 additional variables can be specified

- T_V,P_V Isothermal flash
- V/F=0, P_L Bubble-point T
- V/F=1, P_V Dew-point T
- V/F=0, T_L Bubble-point P
- V/F=1, T_V Dew-point P
- Q=0, P_V Adiabatic flash
- Q, P_V Nonadiabatic flash
- V/F, P_V Percent vaporization flash

Isothermal Flash (1)

- Isothermal flash calculation
 - When the equilibrium temperature T_V (or T_L) and the equilibrium pressure P_V (or P_L) are specified
 - \rightarrow 2C + 5 variables are determined from 2C + 5 equations
 - Not straightforward because of nonlinear equations
 - Use the Rachford-Rice procedure when K-values are independent of composition

Specified variables: $F, T_F, P_F, z_1, z_2, \ldots, z_C, T_V, P_V$ Steps (1) $T_L = T_V$ $(2) P_L = P_V$ (3) Solve $f\{\Psi\} = \sum_{i=1}^{C} \frac{z_i(1-K_i)}{1+\Psi(K_i-1)} = 0$ for $\Psi = V/F$, where $K_i = K_i \{T_V, P_V\}$. (4) $V = F\Psi$ $(5) x_i = \frac{z_i}{1 + \Psi(K_i - 1)}$ (6) $y_i = \frac{z_i K_i}{1 + \Psi(K_i - 1)} = x_i K_i$ (7) L = F - V $(8) Q = h_V V + h_L L - h_F F$

Isothermal Flash (2)

$$f\{\Psi\} = \sum_{i=1}^{C} \frac{z_i(1-K_i)}{1+\Psi(K_i-1)} = 0$$

- Solve iteratively by guessing values of Ψ between 0 and 1 until the function f{ Ψ } = 0
- Newton's method

$$\Psi^{(k+1)} = \Psi^{(k)} - \frac{f\{\Psi^{(k)}\}}{f'\{\Psi^{(k)}\}}$$
$$f'\{\Psi^{(k)}\} = \sum_{i=1}^{C} \frac{z_i(1-K_i)^2}{\left[1+\Psi^{(k)}(K_i-1)\right]^2}$$

$$\left| \Psi^{(k+1)} - \Psi^{(k)} \right| / \Psi^{(k)} < \varepsilon \, (= 0.0001)$$

Bubble and Dew Points (1)

$$f\{\Psi\} = \sum_{i=1}^{C} \frac{z_i(1-K_i)}{1+\Psi(K_i-1)} = 0$$

• At the bubble point, $\Psi = 0$ and $f{0} = 0$

$$f\{0\} = \sum_{i} z_i (1 - K_i) = \sum_{i} z_i - \sum_{i} z_i K_i = 0 \quad \rightarrow$$

$$\sum_{i} z_{i} K_{i} = 1$$

• At the due point, $\Psi = 1$ and $f\{1\} = 0$

$$f\{1\} = \sum_{i} \frac{z_i(1-K_i)}{K_i} = \sum_{i} \frac{z_i}{K_i} - \sum_{i} z_i = 0 \qquad \rightarrow \qquad \sum_{i} \frac{z_i}{K_i} = 1$$

 For a given feed composition, z_i, the above equation can be used to <u>find T for a specified P</u> or to <u>find P for a</u> <u>specified T</u>

Bubble and Dew Points (2)

- How to determine K-values ?
 - (1) Plots of K-values for a specific T and P
 - (2) Equations for vapor-liquid equilibria
 - Raoult's law $K_i = P_i^{sat} / P$
 - Modified Raoult's law $K_i = \gamma_i P_i^{sat} / P$

(3) Iterative calculations

 $f\{P\} = \sum_{i}^{C} z_i K_i - 1 \qquad \qquad f\{P\} = \sum_{i}^{C} \frac{z_i}{K_i} - 1$ Method of false position

$$P^{(k+2)} = P^{(k+1)} - f\{P^{(k+1)}\} / \left[\frac{f\{P^{(k+1)}\} - f\{P^{(k)}\}}{P^{(k+1)} - P^{(k)}}\right]$$

Adiabatic (Q=0) Flash

Ternary Liquid-Liquid Systems

- Ternary mixtures that undergo phase splitting to form two separate liquid phases : using solubility difference
- Extract : the exiting liquid phase that contains the solvent and the extracted solute
- Raffinate : the exiting liquid phase that contains the carrier, A, and the portion of the solute, B, that is not extracted

Components A and C mutually Insoluble

• Solute material balance

$$X_B^{(F)}F_A = X_B^{(E)}S + X_B^{(R)}F_A$$

$$K'_{D_B} = X_B^{(E)} / X_B^{(R)} \quad \rightarrow \quad X_B^{(E)} = K'_{D_B} X_B^{(R)}$$

X_B: ratio of mass (or moles) of solute B, to mass (or moles) of <u>the other</u> <u>component in</u> F, R, or E

K'_{DB}: distribution coefficient defined in terms of mass or mole ratios

$$X_{B}^{(R)} = \frac{X_{B}^{(F)}F_{A}}{F_{A} + K'_{D_{B}}S}$$

• Extraction factor, E_B

$$E_{B} = K'_{D_{B}} S / F_{A}$$

$$E^{(R)} X_{B}^{(R)} = \frac{1}{1 + E_{B}}$$

$$E^{(R)} \cdot X_{B}^{(F)} = \frac{1}{1 + E_{B}}$$

$$E^{(R)} \cdot E^{(R)} \cdot E$$

Components A and C Partially Soluble

 Equilateral triangular diagram Ethylene Glycol (B) - Water (A), ethylene glycol (B), 0.1 0.9 Single phase furfural (C) region 0.8 Above bubble-point pressure 0.2 : no vapor phase Mass figction ethylene OVCOI 0.3 0.7 Mass fraction water 0.4 the two liquid phases have Miscibility boundary Plait identical compositions Point (one phase) 0.6 Path Tie line 0.7 Two-liquid 0.8 0.2 phase region 0.9 0.1 Furfural Water 0.8 0.9 0.2 0.7 0.6 0.5 0.4 0.3 0. Mass fraction furfural Miscibility limits for water-furfural

Other Liquid–Liquid Equilibrium Diagrams

[Example] Water-Glycol-Furfural Equilibrium (1)

A 45% by weight glycol (B)-55% water (A) solution is contacted with twice its weight of pure furfural solvent (C) at 25℃ and 101 kPa.

Determine the composition of the equilibrium extract and raffinate phases produced.

- Basis : 100 g of feed
- Overall material balance
 F + S = E + R

[Example] Water-Glycol-Furfural Equilibrium (2)

Locate the feed (F) and solvent (S) compositions

Define M, the mixing point M = F + S = E + R

Apply the inverse-lever-arm rule (or mass balance) to find M point

$$(F+S)w_{C}^{(M)} = Fw_{C}^{(F)} + Sw_{C}^{(S)}$$
$$\frac{F}{S} = \frac{w_{C}^{(S)} - w_{C}^{(M)}}{w_{C}^{(M)} - w_{C}^{(F)}} = \frac{\overline{SM}}{\overline{MF}}$$

Find E and R along a tie line

Furfura

(C)

S

Apply the inverse-leverarm rule to find the amounts of E and R

When Two Pairs of Components are Partially Soluble

