
Lecture Lecture 4. 4. 
ThermodynamicsThermodynamics
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• Energy, Entropy, and Availability Balances

• Phase Equilibria

- Fugacities and activity coefficients

- K-values

• Nonideal Thermodynamic Property Models

- P-v-T equation-of-state models

- Activity coefficient models

• Selecting an Appropriate Model



Thermodynamic Properties Thermodynamic Properties 

• Importance of thermodynamic properties and p y p p
equations in separation operations
– Energy requirements (heat and work)Energy requirements (heat and work)

– Phase equilibria : Separation limit

– Equipment sizingEquipment sizing 

• Property estimation
– Specific volume, enthalpy, entropy, availability, fugacity, 

activity, etc.

– Used for design calculations

 Separator size and layout

A ili Pi i l Auxiliary components : Piping, pumps, valves, etc.



EnergyEnergy, Entropy and Availability , Entropy and Availability 
BalancesBalancesBalancesBalances
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Energy Energy BalanceBalance

• Continuous and steady-state flow systemContinuous and steady state flow system

• Kinetic, potential, and surface energy changes are 
neglectedneglected

• First law of thermodynamics (conservation of energy)
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Entropy Entropy BalanceBalance

• The first law provides no information on energy efficiency

• Second law of thermodynamics 

(stream entropy flows + entropy flows by heat transfer)leaving system

- (stream entropy flows + entropy flows by heat transfer )entering system
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- Production of entropy

- Irreversible increase in the entropy of the universe

- Quantitative measure of the thermodynamic inefficiency of a process



Availability (Availability (ExergyExergy) ) Balance Balance 

• The entropy balance contains no terms related to shaft work

Th t i diffi lt t l t ith ti• The entropy is difficult to relate with power consumption

• Availability (exergy) : Available energy for complete conversion 
to shaft work

sThb 0
to shaft work

• Stream availability function :  
a measure of the maximum amount of stream energy that can be 

(Entropy balance)  T0 - (Energy balance) 

a measure of the maximum amount of stream energy that can be
converted into shaft work if the stream is taken to the reference state
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= loss of availability (lost work)



Lost Work, Minimum Work, Lost Work, Minimum Work, and and 
Second Law EfficiencySecond Law EfficiencySecond Law EfficiencySecond Law Efficiency

• Lost work, 0 irrLW T S 
- The greater its value, the greater is the energy inefficiency

- Its magnitude depends on the extent of process irreversibilities

• Minimum work of separation W

- Reversible process : LW = 0

• Minimum work of separation, Wmin

– Minimum shaft work required to conduct the separation

– Equivalent to the differenceEquivalent to the difference 

in the heat transfer and shaft work min
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Phase Phase EquilibriaEquilibria

• The phase equilibria of the given system provide possible 
equilibrium compositions (separation limit)equilibrium compositions (separation limit)

• Equilibrium : Gibbs free energy for all phases is a minimum 
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The chemical potential of a particular species in a multicomponent 
system is identical in all phases at physical equilibrium.



FugacitiesFugacities and Activity Coefficientsand Activity Coefficients

• Chemical potential 
Units of energy

• More convenient quantities

– Units of energy 

– Not easy to understand physical meaning 

q

– Fugacity : pseudo-pressure 

– Equality of chemical potentials   equality of fugacities
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– Fugacity coefficient

 Ratio of fugacity and pressure
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 Reference : ideal gas  

– Activity

 Ratio of fugacities
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 Ratio of activity and composition 

 Departure from ideal solution behavior
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KK--ValuesValues

• Phase equilibrium ratio : ratio of mole fractions of a species 
present in two phases at equilibrium

• K-value (vapor-liquid equilibrium ratio; K-factor)         

/i i iK y x
: for the vapor-liquid case 

• Distribution coefficient (liquid-liquid equilibrium ratio) 
: for the liquid-liquid case

(1) (2)/Di i iK x x

• Relative volatility : for the vapor-liquid caseRelative volatility  for the vapor liquid case

/ij i jK K 

• Relative selectivity : for the liquid liquid case
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• Relative selectivity : for the liquid-liquid case



Phase Equilibrium Calculations (VLE)Phase Equilibrium Calculations (VLE)
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• Phi-Phi approach : equation-of-state form of K-value
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NonidealNonideal Thermodynamic Thermodynamic 
Property ModelsProperty ModelsProperty ModelsProperty Models

• No universal equations are available for computing, for 
nonideal mixtures, values of thermodynamic properties such 
as density, enthalpy, entropy, fugacities, and activity 

ffi i t f ti f T P d h iticoefficients as functions of T, P, and phase composition.

⇒ (1) P-v-T equation-of-state models

( )

• P-v-T equation-of-state models

(2) Activity coefficient or free-energy models

q

Nonideality is due to (1) the volume occupied by the molecules 
and (2) intermolecular forces among the molecules

e.g. the van der Waals equation
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Useful Equations of StateUseful Equations of State

• Mixing rules
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Models for Models for Activity CoefficientsActivity Coefficients
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Notes on Notes on Using Using Phase Equilibrium Phase Equilibrium 
ModelsModelsModelsModels

• Low pressure VLE
Gamma Phi approach recommended– Gamma-Phi approach recommended

– Poynting correction (modified Raoult’s law) required for medium pressure

– Cannot be applied when T or P condition exceeds critical T, P 

• High pressure VLE
– Phi-Phi approach recommended

– Special care should be taken for polar components (alcohols waterSpecial care should be taken for polar components (alcohols, water, 
acids, amines, etc.)

• Check binary interaction parameters matrix
If parameters exist use them– If parameters exist, use them

– If parameters do not exist,

 Try to obtain by regression of experimental data 

U t ib ti th d ( UNIFAC) Use group contribution method (e.g. UNIFAC)

• Special applications   Specialized models required 

– Polymer solutionPolymer solution

– Electrolyte solution

– Biomolecular applications 



Selecting an Appropriate ModelSelecting an Appropriate Model

(LG): light gases (HC): hydrocarbons
(PC): polar organic compounds (A): aqueous solutions(PC): polar organic compounds (A): aqueous solutions
(E): electrolytes

• If the mixture is (A) with no (PC)• If the mixture is (A) with no (PC)
- If (E) are present  modified NRTL equation
- If (E) are not present  a special model 

• If the mixture contains (HC), covering a wide boiling rage
 The corresponding-states method of Lee-Kesler-Plöcker

If h b ili f i f (HC) i id• If the boiling range of a mixture of (HC) is not wide
- For all T and P  the P-R equation
- For all P and noncryogenic T  the S-R-K equation

• If the mixture contains (PC)

- For all T, but not P in the critical region  the Benedict-Webb-
Rubin-Starling method

• If the mixture contains (PC)
- If (LG) are present  the PSRK method
- If (LG) are not present  a suitable liquid-phase  method


