Lecture 3. Basic Separation Concepts (2) [Ch. 1]

- Component Recoveries and Product Purities
 - Split fraction
 - Split ratio
- Separation Power (Separation Factor)
- Selection of Feasible Separation Processes
 - Keller's correlation
 - Technological and use maturities
 - Ease of scale-up

Component Recoveries and Product Purities

- Separation process
 - Conservation of mass
 - For no reaction and continuous, steady-state operation

$$n_i^{(F)} = \sum_{p=1}^N n_i^{(p)} = n_i^{(1)} + n_i^{(2)} + n_i^{(3)} + \dots + n_i^{(N-1)} + n_i^{(N)}$$

- $i: 1 \sim C \rightarrow Components$
- $p: 1 \sim N \rightarrow Product phases$

F: feed

The molar (or mass) flow rate in the feed is equal to the sum of the product molar (or mass) flow rates

Split Fraction and Split Ratio

• Split fraction

$$SF_{i,k} = \frac{n_{i,k}^{(1)}}{n_{i,k}^{(F)}}$$

Fraction of component i found in the first product

• Split ratio

$$SR_{i,k} = \frac{n_{i,k}^{(1)}}{n_{i,k}^{(2)}} = \frac{SF_{i,k}}{(1 - SF_{i,k})}$$

i : component
k : separator
(F): feed
(1): first product (ex: top product)
(2): second product (ex : bottom product)

[Example] Hydrocarbon Recovery Process

Table 1.5 Operating Material Balance for Hydrocarbon Recovery Process

Component	lbmol/h in Stream								
	1 Feed to C1	2 C ₅ +-rich	3 Feed to C2	4 C ₃	5 Feed to C3	6 iC4	7 nC ₄ -rich		
C ₂ H ₆	0.60	0.00	0.60	0.60	0.00	0.00	0.00		
C ₃ H ₈	57.00	0.00	57.00	54.80	2.20	2.20	0.00		
iC_4H_{10}	171.80	0.10	171.70	0.60	171.10	162.50	8.60		
nC_4H_{10}	227.30	0.70	226.60	CO.0	226.50	10.80	215.80		
iC_5H_{12}	40.00	11.90	28.10	CO.0	28.10	0.00	28.10		
nC_5H_{12}	33.60	16.10	17.50	CO.0	17.50	0.00	17.50		
C_6^+	205.30	205.30	CO.0	CO.0	0.00	0.00	0.00		
Total	735.60	234.10	501.50	56.00	445.50	175.50	270.00		

Product Purity and Specification

Component	mol% in Product						
	Propane		Isob	utane	Normal Butane		
	Data	Spec	Data	Spec	Data	Spec	
C ₂ H ₆	1.07	5 max	0		0		
C ₃ H ₈	97.86	93 min	1.25	3 max	0	1 max	
iC_4H_{10}	1.07	2 max	92.60	92 min	83.11	80 min	
nC4H10	0		6.15	7 max	{ 05.11	l so mu	
C ₅ ⁺	0	<u></u> 2	0		16.89	20 max	
Total	100.00		100.00		100.00		

Table 1.7 Comparison of Measured Product Purities with Specifications

- Product specifications
 - mol%, vol%, wt%
 - ppm (parts per million), ppb (parts per billion)

Separation Sequences

- Hydrocarbon feed : propane (C_3), isobutane (iC_4), n-butane (nC_4), isopentane (iC_5), n-pentane (nC_5)
 - \Rightarrow Products : C₃, iC₄, nC₄, iC₅ + nC₅

Separation Power

• Separation power (relative split ratio; separation factor)

: relative degree of separation between two components, i and j, measured by the compositions of the two products

$$SP_{i,j} = \frac{C_i^{(1)} / C_i^{(2)}}{C_j^{(1)} / C_j^{(2)}} = \frac{SR_i}{SR_j} = \frac{SF_i / SF_j}{(1 - SF_i) / (1 - SF_j)}$$

Key-component split	Column	Separation power		
nC_4H_{10} / iC_5H_{12}	C1	137.1		
$C_{3}H_{8}/iC_{4}H_{10}$	C2	7103		
iC_4H_{10} / nC_4H_{10}	C3	377.6		

Achievable SP depends on the number of stages, and the relative thermodynamic and mass transport properties of components

Selection of Feasible Separation

- Selection of a best separation process
 - Selection among a number of feasible candidates
 - A combination of two or more operations may be best
- Factors that influence the selection of feasible separation

	 Composition Flow rate 		\rightarrow	Most important feed conditions
Feed conditions	 Temperature Pressure Phase state 		\rightarrow	Can be altered by pump, compressor,
Product conditions	 Required purities Temperatures Pressures Phase states 		>	and heat exchangers Most important product conditions
Property differences that may be exploited	- Molecular - Thermodynamic - Transport		\rightarrow	Determine method of separation
Characteristics of separation	 Ease of scale-up Ease of staging T, P, phase-state requirements Physical size limitations Energy requirements 			

Keller's correlation

- The cost of recovering and purifying a chemical in a mixture can depend strongly on the concentration.
- The more dilute the feed, the higher the product price.

Technological and Use Maturities of Separation Processes

Ease of Scale-up

n			
Operation in Decreasing Ease of Scale-up	Ease of Staging	Need for Parallel Units	
Distillation	Easy	No need	
Absorption	Easy	No need	
Extractive and azeotropic distillation	Easy	No need	
Liquid-liquid extraction	Easy	Sometimes	
Membranes	Repressurization required between stages	Almost always	
Adsorption	Easy	Only for regeneration cycle	
Crystallization	Not casy	Sometimes	
Drying	Not convenient	Sometimes	

Table 1.10 Ease of Scale-up of the Most Common Separation Operations

- If two parallel units are installed, the additional investment is 100%
- The capacity of a single unit can be doubled for an additional investment cost of about 60%

