Lecture 19. Crystallization [Ch. 17]

- Type of Crystallization
 - Solution crystallization
 - Melt crystallization
- Industrial Example
 - Process for production of MgSO₄·7H₂O
- Crystal Geometry
 - Crystal habit
 - Sphericity

Crystallization

- A solid-fluid separation operation in which crystalline particles are formed from a homogeneous fluid phase
- One of the oldest separation operations : recovery of NaCl as salt crystals from seawater
- Factors for crystallization
 - Cooling the solution
 - Evaporating the solvent
 - Addition of a second solvent

- when water is the additional solvent : watering-out
- when an organic solvent is added to an aqueous salt solution : salting-out
- fast crystallization called precipitation can occur

Type of Crystallization

• Solubility curves

(a) Aqueous systems suitable for solu crystallization (b) Eutectic-forming system of ortho- and parachloronitrobenzene system suitable for melt crystallizatior

nitrobenzene system suitable for melt crystallization (c) Solid-solution system suitable for fractional melt crystallization

Industrial Example

 Production of MgSO₄·7H₂O

Evaporation in one or more vessels (effects) to concentrate solution

Partial separation and washing of the crystals from the resulting slurry (magma) by centrifugation or filtration

Drying the crystals to a specified moisture content

Crystal Geometry

• Crystalline and amorphous states

Crystalline solid	Amorphous solid
 Regular arrangement of	 Irregular arrangement of
atoms	atoms
 Physical properties	 Physical properties are
depend on the direction of	independent of the
measurement (unless cubic	direction of measurement:
in structure): anisotropic	isotropic
	Jan Harris

Crystal Habit

- When crystals grow, they form polyhedrons with flat sides and sharp corners (if unhindered by other surfaces such as container walls and other crystals)
- Crystals are never spherical in shape
- Law of constant interfacial angles (Hauy, 1784)
 - The angles between corresponding faces of all crystals are constant, even though the crystals vary in size and in the development of the various faces
 - Crystal habit
 - The interfacial angles and lattice dimensions can be measured by X-ray crystallography

Sphericity

- Typical magmas from a crystallizer contain a distribution of crystal sizes and shapes
- Characteristic crystal dimension for irregular-shaped particle \rightarrow sphericity, ψ

 $\psi = \frac{\text{surface area of a sphere with the same volume as the particle}}{\text{surface area of the particle}}$

For a sphere, $\psi = 1$; for all other particles, $\psi < 1$

$$\left(\frac{s_p}{v_p}\right)_{\text{sphere}} = \frac{\pi D_p^2}{(\pi D_p^3 / 6)} = \frac{6}{D_p}$$

$$\Rightarrow \psi = \frac{6}{D_p} \left(\frac{v_p}{s_p} \right)_{\text{particle}}$$