Lecture 18. Adsorption, Ion Exchange, and Chromatography

[Ch. 15]

- Adsorption
- Ion-Exchange
- Chromatography
- Regeneration
- Sorbents
 - Adsorbents
 - Physisorption vs. chemisorption
 - Porosity

Adsorption

- The binding (attachment) of molecules or particles (from the gas or liquid phase) to a surface of a solid phase
- Molecules, atoms, or ions in a gas or liquid diffuse to the surface of a solid → bond with the solid surface or are held there by weak intermolecular forces

Ion-Exchange

- lons of positive charge (cations) or negative charge (anions) in a liquid solution replace dissimilar and displaceable ions of the same charge contained in a solid ion exchanger
- Ion exchanger contains immobile, insoluble, and permanently bound co-ions of the opposite charge
- Water softening by ion exchange
 Ca²⁺ (aq) + 2NaR (s) ↔ CaR₂ (s) + 2Na⁺ (aq)

Chromatography

- The solutes move with an inert (eluting fluid) at different rates because of repeated sorption, desorption cycles
- The sorbent may be a solid adsorbent, an insoluble, nonvolatile, liquid absorbent contained in the pores of a granular solid support, or an ion exchanger

Regeneration

 Adsorption process: the sorbed substances are desorbed and recovered to reuse the adsorbent

lon-exchange process: replace ions using solutions (e.g. H₂SO₄ for cation, NaOH for anion resins)

Chromatography: regeneration occurs continuously, but at

changing locations

Sorbents

- Requirements for sorbents
 - High selectivity to enable sharp separations
 - High capacity to minimize the amount of sorbent needed
 - Favorable kinetic and transport properties for rapid sorption
 - Chemical and thermal stability
 - Hardness and mechanical strength to prevent crushing and erosion
 - Free-flowing tendency for ease of filling or emptying vessels
 - High resistance to fouling for long life
 - No tendency to promote undesirable chemical reactions
 - Capability of being regenerated
 - Low cost

Adsorbents

• Commercial porous adsorbents

Adsorbent	Nature	Pore diameter d _p , Å	Surface area S _g , m²/g
Activated alumina (Al ₂ O ₃)	Great affinity for water	10-75	320
Silica gel (SiO ₂) Small pore Large pore	High affinity for water and other polar compounds	22-26 100-150	750-850 300-350
Activated carbon Small pore Large pore	Hydrophobic (affinity for nonpolar and weakly polar compounds)	10-25 >30	400-1200 200-600
Molecular-sieve carbon	Hydrophobic	2-10	400
Molecular-sieve zeolites	Polar-hydrophilic, crystalline, highly selective $M_{x/m}[(AlO_2)_x(SiO_2)_y]zH_2O$	3-10	600-700

Physisorption vs. Chemisorption

- Physisorption (physical adsorption)
- Intermolecular attractive forces (van der Waals forces) between molecules of a solid and the gas are greater than those between molecules of the gas itself
- The heat of adsorption is close to the heat of vaporization (in the region of 20 kJ/mol)

- Chemisorption (chemical adsorption)
- Involves the formation of chemical bonds between the adsorbent and adsorbate in a monolayer
- The heat of adsorption is much larger than the heat of vaporization (in the region of 200 kJ/mol)

Porosity

Bed porosity (external porosity, interparticle porosity)

$$\varepsilon_b = \frac{\text{volume between particles}}{\text{volume of packed bed}} = 1 - \frac{\rho_b}{\rho_p}$$

Particle porosity (intraparticle porosity)

$$\varepsilon_p = \frac{\text{volume of fluid inside particles}}{\text{volume of particles (solid + fluid)}} = 1 - \frac{\rho_p}{\rho_s}$$

- Specific pore volume $V_p = \varepsilon_p / \rho_p$
- Specific surface area $S_g = 4\varepsilon_p / \rho_p d_p$