### Lecture 11. Binary Distillation (1) [Ch. 7]

- Distillation
  - Overview & Industrial use
  - Operation
- McCabe-Thiele Method
  - Rectifying section
  - Stripping section
  - Feed-stage considerations
  - q-line
  - Optimal and nonoptimal locations of feed stage
- Limiting Conditions
  - Minimum number of equilibrium stages
  - Minimum reflux ratio
  - Perfect separation

## Distillation

- Distillation (fractionation) vs. absorption and stripping
   the second fluid phase is usually created by thermal means (vaporization and condensation) rather than by introduction
- 11<sup>th</sup> century, distillation was used in Italy to produce alcoholic beverages (batch process)
- → 16<sup>th</sup> century, it was known that separation could be improved by multiple vapor-liquid contacts (stages)
- → 20<sup>th</sup> century, multistage distillation became the most widely used industrial method for separating liquid mixtures







# **Distillation: Industrial Use**

- Distillation is technically the most mature separation operation
- Distillation is very energy intensive, especially when the relative volatility, α, is low (< 1.50)</li>
- Most significant distillation energy has been consumed by petroleum refining to separate crude oil into petroleum fractions, light hydrocarbons ( $C_2$ 's to  $C_5$ 's), and aromatic chemicals



### **Distillation Operation**



- Total condenser: the overhead vapor leaving the top stage is totally condensed → liquid distillate product + liquid reflux that is returned to the top stage
- Partial reboiler: liquid from the bottom stage is partially vaporized → liquid bottoms product + vapor boilup that is returned to the bottom stage
- Multiple, countercurrent contacting stages can achieve a sharp separation unless an azeotrope is formed

### Phase Equilibrium of Binary Mixture

- Goal of distillation: from the feed to produce a distillate, rich in the light key ( $x_D \rightarrow 1.0$ ), and a bottoms product, rich in the heavy key ( $x_B \rightarrow$ )
- Relative volatility,  $\alpha$  $\alpha_{1,2} = K_1 / K_2$ Raoult's law  $K_1 = P_1^s / P$  and  $K_2 = P_2^s / P$  $\alpha_{12} = P_1^s / P_2^s$  $\alpha_{1,2} = \frac{y_1 / x_1}{y_2 / x_2} = \frac{y_1 (1 - x_1)}{x_1 (1 - y_1)}$  $y_1 = \frac{\alpha_{1,2} x_1}{1 + x_1 (\alpha_{1,2} - 1)}$



For ideal binary mixtures of components with close boiling points, T changes are small and  $\alpha$  is almost constant

#### McCabe-Thiele Method

| Specifications  |                                                                   |                 |        |
|-----------------|-------------------------------------------------------------------|-----------------|--------|
| F               | Total feed rate                                                   |                 |        |
| $z_F$           | Mole-fraction composition of the feed                             |                 |        |
| Р               | Column operating pressure (assumed uniform throughout the column) | \$              | 10.000 |
|                 | Phase condition of the feed at column pressure                    | ke              | Ì      |
|                 | Vapor-liquid equilibrium curve for the binary                     | ight            |        |
|                 | mixture at column pressure                                        | it (            | 1      |
|                 | Type of overhead condenser (total or partial)                     | ner             |        |
|                 | Type of reboiler (usually partial)                                | d               | l      |
| $x_D$           | Mole-fraction composition of the distillate                       | wood v.         | (      |
| XE              | Mole-fraction composition of the bottoms                          | le (            |        |
| $R/R_{\rm min}$ | Ratio of reflux to minimum reflux                                 | 'olati<br>Ie va | 1      |
| Results         |                                                                   | in th           | (      |
| D               | Distillate flow rate                                              | ofn             | (      |
| В               | Bottoms flow rate                                                 | lo<br>I         |        |
| $N_{\min}$      | Minimum number of equilibrium stages                              | acti            | 1      |
| $R_{\min}$      | Minimum reflux ratio, $L_{\min}/D$                                | efr             |        |
| R               | Reflux ratio, $L/D$                                               | Nol             | ľ      |
| VB              | Boilup ratio, $\bar{V}/B$                                         | _               |        |
| Ν               | Number of equilibrium stages                                      |                 |        |
|                 | Optimal feed-stage location                                       |                 |        |
|                 | Stage vapor and liquid compositions                               |                 |        |
|                 | stage vapor and inquid compositions                               |                 |        |

# Graphical equilibrium-stage method for trayed towers



#### **Rectifying Section**



#### **Stripping Section**



### Feed-Stage Considerations

- $x_D$  and  $x_B$  can be selected independently
- R and  $V_{\rm B}$  are related by the feed phase condition



#### Relations for Reflux Ratio and Boilup Ratio

Relations covering feed conditions from a saturated liquid to a saturated vapor



For the specification of distillation operation, R or  $R/R_{min}$  is used traditionally because the distillate product is often the more important product

 q: ratio of the increase in molar reflux rate across the feed stage to the molar feed rate

$$q = \frac{\overline{L} - L}{F} \qquad q = 1 + \frac{\overline{V} - V}{F}$$

| Feed condition      | Value of q        |  |
|---------------------|-------------------|--|
| Subcooled liquid    | > 1               |  |
| Bubble-point liquid | 1                 |  |
| Partially vaporized | L <sub>F</sub> /F |  |
| Dew-point vapor     | 0                 |  |
| Superheated vapor   | < 0               |  |

## q-Line

 q-line: one point of which is the intersection of the rectifying and stripping operating lines



#### Optimal and Nonoptimal Locations of Feed Stage



#### Minimum Number of Equilibrium Stages

- Increasing reflux  $\rightarrow L/V$  increases to limiting value 1
- Increasing boilup ratio  $\rightarrow \overline{L}/\overline{V}$  decreases to limiting value 1



### Minimum Reflux Ratio

• The number of equilibrium stages increases when operating line moves closer to equilibrium curve



### **Perfect Separation**



• Perfect separation

$$x_{D} = 1, x_{B} = 0$$

- Number of stages : infinite
- Reflux ratio : finite value
- Slope of operating line : finite value



## [Example] Distillation of a Binary Mixture of Benzene and Toluene

A trayed tower is to be designed to continuously distill 450 lbmol/hr of a binary mixture of <u>60 mol% benzene</u> and <u>40 mol%</u> toluene. A liquid distillate and bottom product of <u>95 mol%</u> and <u>5 mol%</u> benzene are to be produced. The feed is preheated so that it enters the column with a molar percent vaporization equal to the distillate-to-feed ratio. Use the McCabe-Thiele method to compute following, assuming a uniform pressure of 1 atm throughout the column.

(a)  $N_{min}$ , (b)  $R_{min}$ , and (c) N for  $R/R_{min}{=}1.3$  and the optimal location of feed stage

• Overall material balance on benzene & total balance

$$z_F F = x_D D + x_B B$$

$$F = B + D$$

$$0.60(450) = 0.95(D) + 0.05(B)$$

$$B = 175 \text{ lbmol/h}$$

$$D / F = 0.611$$

D

#### [Example] (a) Minimum Number of Theoretical Stages, N<sub>min</sub>

$$\frac{L}{V} \rightarrow 1 \quad \text{and} \quad \frac{\overline{L}}{\overline{V}} \rightarrow 1$$

x and y : benzene, more-volatile component  $x_D = 0.95$  $x_B = 0.05$ 

 $\Rightarrow N_{min} = 6.7$ 



## [Example] (b) Minimum Reflux Ratio, R<sub>min</sub>

$$V_F / F = D / F = 0.611$$

$$q = \frac{L_F}{F} = \frac{(F - V_F)}{F} = 0.389$$

Slope of q-line

$$\frac{q}{q-1} = \frac{0.389}{0.389-1} = -0.637$$

Slope of operating line

$$\frac{0.95 - 0.684}{0.95 - 0.465} = 0.55 = \frac{R}{R + 1}$$

 $\Rightarrow R_{\min} = 1.22$ 



Mole fraction of benzene in the liquid, x

#### [Example] (c) Number of Equilibrium Stages, N

 $R = 1.3R_{\min}$ = 1.3(1.22) = 1.59

Slope of operating line for rectifying section

 $\frac{R}{R+1} = \frac{1.59}{1.59+1} = 0.614$  $\Rightarrow N = 13.2$ 

Optimal location of feed stage: 7



Mole fraction of benzene in the liquid, x