Designs to Prevent Fires and Explosions

Objective

Prevent the initiation of the fire or explosion and minimize the damage produced after it.

How can it be prevented?

- 4 Inerting
- Control static electricity
- Ventilation
- Explosion—proof equipment

Inerting

Process of adding an inert gas to a combustible mixture to reduce the concentration of O_2 below the LOC

Ex. N₂, **CO**₂

Process

 Purge vessel
 Image: Constraint of the second se

Purging Methods

- Vacuum purging
- Pressure purging
- Combined pressure vacuum purging
- Sweep through purging
- **4** Siphon purging

Vacuum Purging

Most common procedure

Not design for large storage tanks

<u>Steps</u>

- 1. Vacuum the vessel
- 2. Relieve the vacuum with an inert gas to P_{atm}
- 3. Repeat steps 1&2 until the desired oxidant concentration is reached

Vacuum Purging 2

$$y_{j} = y_{0} \left(\frac{n_{L}}{n_{H}}\right)^{j} = y_{0} \left(\frac{P_{L}}{P_{H}}\right)^{j}$$

$$\Delta n_{N2} = j \left(P_H - P_L \right) \frac{V}{R_g T}$$

10/23/2011

2010 Fall

Example 7-1

- **4** Reduce O₂ conc. to 1ppm
- **4** 1000 gal vessel
- <mark>↓</mark> T = 75 ºF
- **4** Vacuum pump reaches 20 mm Hg

Determine the number of purges required and the total nitrogen used.

Pressure Purging

- 1. Add inert under pressure
- 2. Vent to the atmosphere

$$y_j = y_0 \left(\frac{n_L}{n_H}\right)^j = y_0 \left(\frac{P_L}{P_H}\right)^j$$

Advantage: Potential for cycle time reductions. However, more inert gas is needed.

Compare the result of Vacuum!!

Vacuum vs. Pressure

	Vacuum	Pressure
Pressure purge cycles	4	6
Total moles of nitrogen	1.33	11.1

Ex 7-1(p. 294) vs. Ex 7-2(p. 296)

Pressure purging

Faster, uses more inert gas than vacuum purging
 Vacuum purging
 Uses less inert gas

Pressure Purging 2

Combined Pressure – Vacuum Purging

Which one should be performed first?

♣ Pressure → Vacuum

$$y_0 = 0.21 \left(\frac{P_0}{P_H}\right)$$

↓ Vacuum → Pressure

Vacuum-pressure purging with initial pressurization

Vacuum-pressure purging with initial evacuation

Purging with Impure Nitrogen

$$y_{j} = y_{j-1} \left(\frac{P_{L}}{P_{H}} \right) + y_{oxy} \left(1 - \frac{P_{L}}{P_{H}} \right)$$
$$\left(y_{j} - y_{oxy} \right) = \left(\frac{P_{L}}{P_{H}} \right) \left(y_{0} - y_{oxy} \right)$$

$$y_{j} = y_{0} \left(\frac{n_{L}}{n_{H}}\right)^{j} = y_{0} \left(\frac{P_{L}}{P_{H}}\right)^{j}$$

For pure N₂ purging

Sweep through

Sweep through purging

- Process where the purge gas is added into a vessel at one opening and withdraws
- The mixed gas from the vessel to the atmosphere from another opening.
- **4** Requires large quantities of nitrogen

Siphon Purging

- Fill the vessel with liquid-water or any liquid compatible with the product.
- The purge gas is added to the vapor space as the liquid is drained from the vessel.

Vol. purge gas = Vol. vessel Rate of purging = Vol. rate of liquid discharge

Out of Service Fuel Concentration

Estimate Flammability Limits

Combustion: $C_m H_x O_y + z O_2 \rightarrow m C O_2 + (x/2) H_2 O_2$

$$z, \frac{moles O_2}{moles fuel}, = m + x/4 - y/2$$

 $C_{st} = vol. \%$ fuel in air $= \frac{moles fuel}{moles fuel + moles air}$

= $\frac{100}{1+z/0.21}$ for 21 % O₂ in air

Flammability Diagram - OSFC

Pure N₂ added till point S, OSFC

Requires a large amount of nitrogen \Rightarrow costly

Pure N₂ added till point S, OSFC

> the air forms a flammable mixture at the entry point

In Service Oxygen Concentration

Flammability Diagram - ISOC

Static Electricity

Ignition source of many fires & explosions
Difficult to eliminate

Static electricity hazards or nuisances arise when charge separation occurs leading to an accumulation of one sign charge within some defined boundary.

Electrostatic Process

Household Examples

- Walking across a rug ~ 20mJ
- Placing different materials in a tumble dryer
- Removing a sweater
- **4** Combing hair
- Clinging fabrics, audible sparks

Industrial Examples

- **Flow of liquids through pipes and filters**
- Settling of solid or an immiscible liquid through another liquid
- Ejection of droplets, mist particles, or aerosols from a nozzle as a liquid is pumped through a hose or pipe
- Splashing or agitation of a liquid against a solid surface
- ~ 0.1mJ is considered dangerous

Charge Accumulation

Contact and frictional

dissimilar material

4s-s interfaces

Double layer charging

4separation on microscopic scale at liquid interfaces (I-

I, I-g, I-s)

4 Induction

a conductor is placed in an electric field created by an electrostatic charge being held in a nonconductor

4 Charge transfer

when charged objects contacts an uncharged object and the charge is shared between them

2010 Fall

Electrostatic Discharges

Brush discharge

Conical pile discharge

Spark discharge

Propagating brush discharge

MIE < 10 J

Incendivity for $MIE < 3 mJ^1$

 $MIE < 1 I^2$

- Field Intensity>3MV/m (Breakdown voltage of air)
- Surface charge> 2.7×10⁻⁵ C/m²
- Powder with a high resistivity>10¹⁰ ohm
- Coarse particles>1mm
- High charge of mass ratio
- **↓**Filling rate≥0.5kg/s

Energy from Electrostatic Discharge

The energy depends on:
 Q, the accumulated charge
 C, the capacitance of the object

4V, potential of the object

$$C = Q/V$$
$$J = \frac{Q^2}{2C}$$

Although this expression is only for capacitance discharges in conducting systems, it is used qualitatively for the other discharges.