Dispersion Models

Exposure to Release

Predict effects of exposure near the surface.

Stages

- **1. Source**
- **2. Acceleration, Diffusion**
- **3. Gravity**
- **4. Transition**
- **5. Surface**
- **6. Turbulence**

Predict % affected by the exposure.

Fluids Beyond the Sources

- **Effluent properties dominate near a leak**
- **Material then migrates and mixes with air**
- **Ambient conditions eventually dominate**
	- $⊩$ **Pressure, temperature, wind velocity, humidity, sun light**
- $\textcolor{red}{\textbf{■}}$ **Transport and mixing with air at a vapor cloud boundary**
- $\frac{1}{2}$ **/sopleth: constant concentration boundary of a vapor cloud**

Accidental Flow

Dispersion Modeling Needed

Goals: prevent releases; mitigation Prevent

Inherent safety practices: reduction, substitution, attenuation

Process design and integrity

PSM management; PHA

Mitigation measures

Emergency response planning

10/15/2011 5

Hazard Levels

- **Concentration**
- **Air velocity and turbulence**
- **Time period of release;** *C***(***time***) following release**
- **↓Position of cloud relative to ground**

Gaussian Dispersion Pattern

Dispersion Parameters

- **Cloud of effluents expands, mixes with air**
- **Mixing dilutes the effluent:** *C* **decreases**
- **Lower downwind** *C* ⇒ *greater area* **affected**
- $\textcolor{red}{\textbf{↓}}$ **Dominant dispersion mechanism: turbulent dispersion** ⇒ **horizontal and vertical movement**
- **Mixing rate depends on** *u***, atmosphere stability, buoyancy**

Light winds, strong sun ⇒ **most unstable: rapid diffusion**

Plume & Puff

Plume Model

- **Steady state concentration from a continuous source, e.g. smokestack**
- **Initially increases in size, additions from source**
- **Steady state: same amount of effluent added to plume as is mixed with air; constant volume**
- **Source stopped: plume size decreases as mixing with air is dominant, plume returns to source origin, finally disappears.**

Puff Model

- **Cloud formed from a fixed amount of effluent, e.g., from a ruptured vessel**
- $\textcolor{red}{\textbf{�}{\textbf{F}}}$ **Release over a short period of time that source is active**
- **Movement from source: dependent on air velocity**
- **Material mixes with air, boundary diminished in size, finally disappears**

$$
\frac{\partial \langle C \rangle}{\partial t} + \langle u_j \rangle \frac{\partial \langle C \rangle}{\partial x_j} = \frac{\partial}{\partial x_j} \left(K_j \frac{\partial \langle C \rangle}{\partial x_j} \right)
$$

\nPlumes\n
$$
\frac{Plume}{\text{Of Putf}}
$$
\n1. SS, $\langle u_j \rangle = 0, K_j = K^*$ $\langle C \rangle (r) = \frac{Q_m}{4\pi K^* r}$
\n3. NSS, $\langle u_j \rangle = 0, K_j = K^*$ $\langle C(r, t) \rangle = \frac{Q_m}{4\pi K^* r}$ $\text{erfc} \left(\frac{r}{2\sqrt{K^* t}} \right)$
\n4. SS, $\langle u_j \rangle = \langle u_x \rangle = u, K_j = K^*$ $\langle C(r) \rangle = \frac{Q_m}{4\pi K^* r} \exp \left(-\frac{u(r - x)}{2K^*} \right)$
\n6. SS, $\langle u_j \rangle = \langle u_x \rangle = u, K_x, K_y, K_z$ Source

9.
$$
S_{10^{15/20}j_1}^{S} \geq u_x \geq u, K_x, K_y, K_{\text{net-1-NC}}^{S} \geq 0
$$

$$
\frac{\partial \langle C \rangle}{\partial t} + \langle u_j \rangle \frac{\partial \langle C \rangle}{\partial x_j} = \frac{\partial}{\partial x_j} \left(K_j \frac{\partial \langle C \rangle}{\partial x_j} \right)
$$

\nPlumes\n
$$
\frac{P_{lume}}{\text{Of Putf}}
$$
\n
$$
\text{Out Putf}
$$
\n
$$
\langle C(r,t) \rangle = \frac{Q_m}{8(\pi K^* t)^{3/2}} \exp\left(-\frac{r^2}{4K^* t}\right)
$$
\n
$$
2. \langle u_j \rangle = 0, K_j = K^*
$$
\n
$$
5. \langle u_j \rangle = 0, K_x, K_y, K_z
$$

7.
$$
\langle u_j \rangle = \langle u_x \rangle = u, K_x, K_y, K_z
$$

$$
8. \langle u_j \rangle = 0, K_x, K_y, K_z
$$
Source

Neutrally Buoyant Dispersion

No reactions; small effect of molecular diffusion

- **Mixing mechanism: air turbulence**
- **Turbulence** ⇒**fluctuations in** *C, u*

$$
\frac{\partial C}{\partial t} + \frac{\partial}{\partial x_j} (u_j C) = 0
$$
\n*u_j*, air velocity
\n*u_j* = $\langle u_j \rangle + u_j$ \rightarrow *C* = $\langle C \rangle + C$

 u'_{j} , C' , fluctuation components

Eddy Diffusivity, *K^j*

Represent *C* **fluctuation due to turbulence**

$$
\langle u'_j \rangle = 0; \ \langle C'_j \rangle = 0
$$

$$
\langle u_j C' \rangle = -K_j \frac{\partial \langle C \rangle}{\partial x_j}
$$

Governing equation:

$$
\frac{\partial \langle C \rangle}{\partial t} + \langle u_j \rangle \frac{\partial \langle C \rangle}{\partial x_j} = \frac{\partial}{\partial x_j} \left(K_j \frac{\partial \langle C \rangle}{\partial x_j} \right)
$$

10/15/2011 METU-NCC 16

1. Steady State, Point Release, No Wind

 $\downarrow Q_m$ constant; C independant of *t*, wind, $u \sim 0$ \uparrow **Constant** $K_i = K^*$ **in all directions**

Polar coordinates, integrate over *r* **:**

$$
\langle C \rangle(r) = \frac{Q_m}{4\pi K^* r}
$$

$$
Q_m
$$
, source term

$$
r = \sqrt{x^2 + y^2 + z^2}
$$

2. Puff Release, No Wind

 \downarrow Wind velocity, $u \sim 0$ \uparrow **Constant** $K_i = K^*$ in all directions

$$
\frac{1}{K^*} \frac{\partial \langle C \rangle}{\partial t} = \frac{\partial^2 \langle C \rangle}{\partial x^2} + \frac{\partial^2 \langle C \rangle}{\partial y^2} + \frac{\partial^2 \langle C \rangle}{\partial z^2}
$$

Instantaneous concentration:

3. Non SS Point Release, No Wind

 $\downarrow Q_m$ constant; wind, $u \sim 0$ \angle **Constant** $K_i = K^*$ **in all directions**

$$
\frac{1}{K^*} \frac{\partial \langle C \rangle}{\partial t} = \frac{\partial^2 \langle C \rangle}{\partial x^2} + \frac{\partial^2 \langle C \rangle}{\partial y^2} + \frac{\partial^2 \langle C \rangle}{\partial z^2}
$$

Integrate instantaneous concentration:

$$
\langle C(r,t) \rangle = \frac{Q_m}{4\pi K^* r} erf \left(\frac{r}{2\sqrt{K^* t}} \right)
$$

Error function & its Integration

4. SS Point Source with Wind

Q^m **constant;** *C* **independent of** *t* **Wind in** *x* **direction,** *u^x* **constant** \uparrow **Constant** $K_i = K^*$ in all directions

10/15/2011 METU-NCC

21

5. Puff with No Wind, K^j Varies

Q^m* **constant; Puff release** \neq No wind(<u_{**j**}> =0) \bf{K} ^{*★*} *K^{*}*, but constant in all directions

$$
\frac{\partial \langle C \rangle}{\partial t} = K_x \frac{\partial^2 \langle C \rangle}{\partial x^2} + K_y \frac{\partial^2 \langle C \rangle}{\partial y^2} + K_z \frac{\partial^2 \langle C \rangle}{\partial z^2}
$$

$$
\langle C \rangle (x, y, z, t) = \frac{Q_m^*}{8(\pi t)^{3/2} \sqrt{K_x K_y K_z}} \exp \left[-\frac{1}{4t} \left(\frac{x^2}{K_x} + \frac{y^2}{K_y} + \frac{z^2}{K_z} \right) \right]
$$

6. SS Point Source with Wind, K^j Varies

Q^m **constant;** *C* **independent of** *t* **Wind in** *x* **direction,** *u^x* **constant** \bf{K} ^{*★*} *K^{*}*, but constant in all directions

7. Puff with Wind

Q^m* **constant; Puff release**

- **Wind in x direction only(** $\langle u_j \rangle = \langle u_x \rangle = u = constant$)
- \bullet *K*^{*j*} ≠ *K^{*}*, but constant in all directions

$$
\frac{\partial \langle C \rangle}{\partial t} = K_x \frac{\partial^2 \langle C \rangle}{\partial (x - ut)^2} + K_y \frac{\partial^2 \langle C \rangle}{\partial y^2} + K_z \frac{\partial^2 \langle C \rangle}{\partial z^2}
$$

$$
\langle C \rangle (x, y, z, t) = \frac{Q_m^*}{8(\pi t)^{3/2} \sqrt{K_x K_y K_z}} \exp\left[-\frac{1}{4t} \left(\frac{(x - ut)^2}{K_x} + \frac{y^2}{K_y} + \frac{z^2}{K_z} \right) \right]
$$

8. Puff with No Wind, Source on Ground

Q^m* **constant; Puff release** \neq No wind(<u_{**j**}> =0) $\mathbf{K}_i \neq \mathbf{K}^*$, but constant in all directions

$$
\frac{\partial \langle C \rangle}{\partial t} = K_x \frac{\partial^2 \langle C \rangle}{\partial x^2} + K_y \frac{\partial^2 \langle C \rangle}{\partial y^2} + K_z \frac{\partial^2 \langle C \rangle}{\partial z^2}
$$

$$
\langle C \rangle(x,y,z,t) = \frac{Q_m^*}{\left(4\pi\right)^{3/2} \sqrt{K_x K_y K_z}} \exp\left[-\frac{1}{4t} \left(\frac{x^2}{K_x} + \frac{y^2}{K_y} + \frac{z^2}{K_z}\right)\right]
$$

Impervious boundary 10/15/2011 **METU-NCC** 25

9. SS Point Source with Source on Ground

Q^m **constant;** *C* **independent of** *t* **Wind in** *x* **direction,** *u^x* **constant** \bf{K} ^{*★*} *K^{*}*, but constant in all directions

10/15/2011 METU-NCC 26

10. SS Point Source with Source at Height H^r above the Ground

- *Q^m* **constant;** *C* **independent of** *t*
- **Wind in** *x* **direction,** *u^x* **constant**
- $\mathbf{K}_i \neq \mathbf{K}^*$, but constant in all directions

Consequence Analysis (Ex)

Risk contour

Consequence Analysis (Ex)

10/15/2011 METU-NCC 29

Pasquill-Gifford Model

K^j **values difficult to measure**

Define: *dispersion coefficient ~* **st dev for** *C* σ_i $\frac{2}{i}$ = 1 2 *C* 2 (*ut*) 2*n i* **=** *x, y, z; n,* **parameter**

 $\sigma_{_j}$ σ : functions of downwind distance, *x*, and **atmospheric conditions in stability classes,** *A - F***, based on sunlight and wind speed. Tab 5-1, p. 187**

 σ_j values for rural or urban plumes, or puffs from Figs **5-10 - 5-12 or Tabs 5-1 - 5-3, pp., 187-189**

Nighttime conditions⁴ **Surface** Thin overcast Daytime insolation³ wind speed or $>4/8$ $\leq 3/8$ (m/s) Strong Moderate Slight low cloud cloudiness < 2 $A-B$ $F⁵$ A B. $F5$ $2 - 3$ $A-B$ B C F. $\mathbf F$ $3 - 4$ В $B-C$ € $D⁶$ Е $C-D$ $4 - 6$ \mathcal{C} $D₆$ D 6. D⁶ \mathcal{C} >6 D⁶ \mathbf{D}^6 D⁶ D°

Table 5-1 Atmospheric Stability Classes for Use with the Pasquill-Gifford Dispersion Model^{1,2}

- **A: Extremely unstable B: Moderately unstable C: Slightly unstable**
- **D: Neutrally stable**
- **E: Slightly stable**
- **C: Moderately stable**

Table 5-2 Recommended Equations for Pasquill-Gifford Dispersion Coefficients for Plume Dispersion^{1,2} (the downwind distance x has units of meters)

Table 5-3 Recommended Equations for Pasquill-Gifford Dispersion Coefficients for Puff Dispersion^{1,2} (the downwind distance x has units of meters)

Figure 5-10 Dispersion coefficients for Pasquill-Gifford plume model for rural releases.

Dispersion coefficients for Pasquill-Gifford plume model for urban releases. Figure 5-11

Figure 5-12 Dispersion coefficients for Pasquill-Gifford puff model.

Atmospheric Stability Classes

Day Temperature

Stability classes classify level of turbulance: 14_{5/2} least stable; F, most stable (Tab. 5-1, p. 187)³⁸

11. Puff, Ground Source, *u* **Constant**

$$
\langle C(x,y,z,t) \rangle = \frac{Q_m^*}{\sqrt{2\pi^{3/2} \sigma_x \sigma_y \sigma_z}} \exp \left\{-\frac{1}{2} \left[\left(\frac{x-ut}{\sigma_x} \right) + \frac{y^2}{\sigma_y} + \frac{z^2}{\sigma_z} \right] \right\}
$$

Ground concentration: *z* **= 0**

Ground concentration along $x: y = z = 0$

Center of moving puff, *x* **=** *ut***:**

$$
\langle C(ut,0,0,t)\rangle = \frac{Q_m^*}{\sqrt{2}\pi^{3/2}\sigma_x\sigma_y\sigma_z}
$$

Total Dose

$$
D_{tid}(x, y, z) = \int_0^\infty \langle C \rangle(x, y, z, t) dt
$$

Puff, ground source, constant *u***:**

Ground level:
$$
D_{tid}(x, y, 0) = \frac{Q_m^*}{\pi \sigma_y \sigma_z u} \exp\left(-\frac{1}{2} \frac{y^2}{\sigma_y^2}\right)
$$

Along
$$
\mathbf{x}: D_{tid}(x,0,0) = \frac{Q_m^*}{\pi \sigma_y \sigma_z u}
$$

12. Plume, Ground Source, *u* **Constant**

$$
\langle C(x, y, z) \rangle = \frac{Q_m}{\pi \sigma_y \sigma_z u} \exp \left[-\frac{1}{2} \left(\frac{y^2}{\sigma_y} + \frac{z^2}{\sigma_z} \right) \right]
$$

Ground $C(x,y,0)$ **:** $z = 0$

Ground, $C(x,0,0)$ along $x: y = z = 0$

Isopleth concentration, *C**** :**

$$
y = \pm \sigma_y \sqrt{2 \ln \left(\frac{\langle C(x,0,0,t) \rangle}{\langle C(x,y,0,t) \rangle} \right)} = \pm \sigma_y \sqrt{2 \ln \left(\frac{\langle C(x,0,0,t) \rangle}{\langle C^* \rangle} \right)}
$$

13. Plume, Source at H^r , *u* **Constant**

Model Implementation

- **Plume** *Cmax***: release position**
- **Puff** *Cmax***: center of cloud**
- **↓ If atmosphere conditions not known, assume worst case for highest** *C***.**
- **If wind speed not known, assume 2 m/s**
- **Consider P-G model assumptions: neutral buoyancy, turbulent mixing, time concentrations (10 min), 0.1 - 10 km distances**

Britter-McQuaid Dense Gas Model

- **Ground level releases; rural, flat terrain**
- **Atmospheric stability effects not included**
- **Mixing from drop by gravity of effluent into air**
- **Main parameters: initial buoyancy,** *g^o* **, initial volume flux,** *q^o* **, or total initial volume,***V^o* **, wind speed at 10 m elevation,** *u*

$$
g_o = g(\rho_o - \rho_a)/\rho_a
$$

$\boldsymbol{\rho}_a$ = density of ambient air

10/15/2011 METU-NCC 44

Applicability of B-M Model

If model criteria satisfied, use Figs 5-13, 5-14 or Tabs 10/15/2011 **5-4, 5-5 to est. C or downwind distance, x** 45

Implementation of B-M Model

C^o **= 1 for pure material initially released** *Cm/ C^o* **: ratio of material conc in air to pure**

$$
q_o = q_L \frac{\rho_L}{\rho_V} \quad \textbf{q}_L \text{ : liquid volumetric discharge rate}
$$

 $V_o = q_o R_d$: initial volume, Puff

Adjust conc for density at *Ta* **:**

Ce **: effective conc**

- *C** **: unadjusted conc**
- *To* **: T at release, K**
- *Ta* **: T ambient, K**

Table 5-4 Equations Used to Approximate the Curves in the Britter-McQuaid Correlations Provided in Figure 5-13 for Plumes

Table 5-4 Equations Used to Approximate the Curves in the Britter-McQuaid Correlations Provided in Figure 5-13 for Plumes

Concentration ratio (C_n/C_o)	Valid range for $\alpha = \log\left(\frac{g_o^2 q_o}{\sigma} \right)^{1/5}$	$\beta = log$	
0.01	$\alpha \leq -0.70$	2.25	
	$-0.70 < \alpha \leq -0.29$	$0.49\alpha + 2.59$	
	$-0.29 < \alpha \le -0.20$	2.45	
	$-0.20 < \alpha \leq 1$	$-0.52\alpha + 2.35$	
0.005	$\alpha \leq -0.67$	2.40	
	$-0.67 < \alpha \leq -0.28$	$0.59\alpha + 2.80$	
	$-0.28 < \alpha \leq -0.15$	2.63	
	$-0.15 < \alpha \leq 1$	$-0.49\alpha + 2.56$	
0.002	$\alpha \leq -0.69$	2.6	
0.002	$-0.69 < \alpha \le -0.25$	$0.39\alpha + 2.87$	
0.002	$-0.25 < \alpha \le -0.13$	2.77	
0.002	$-0.13 < \alpha \leq 1$	$-0.50\alpha + 2.71$	

Concentration ratio (C_{m}/C_{o})	Valid range for $g_\mathrm{o} V_\mathrm{o}^{\dagger/3}$ \ $^{1/2}$ $\alpha = \log$	$\frac{x}{1^{1/3}}$ $\beta = \log$
0.1	$\alpha \leq -0.44$ $-0.44 < \alpha \leq 0.43$ $0.43 < \alpha \leq 1$	0.70 $0.26\alpha + 0.81$ 0.93
0.05	$\alpha \leq -0.56$ $-0.56 < \alpha \le 0.31$ $0.31 < \alpha \leq 1.0$	0.85 $0.26\alpha + 1.0$ $-0.12\alpha + 1.12$
0.02	$\alpha \leq -0.66$ $-0.66 < \alpha \le 0.32$ $0.32 < \alpha \leq 1$	0.95 $0.36\alpha + 1.19$ $-0.26\alpha + 1.38$
0.01	$\alpha \leq -0.71$ $-0.71 < \alpha \leq 0.37$ $0.37 < \alpha \leq 1$	1.15 $0.34\alpha + 1.39$ $-0.38\alpha + 1.66$
0.005	$\alpha \leq -0.52$ $-0.52 < \alpha \leq 0.24$ $0.24 < \alpha \leq 1$	1.48 $0.26\alpha + 1.62$ $0.30\alpha + 1.75$
0.002	$\alpha \leq 0.27$ $0.27 < \alpha \leq 1$	1.83 $-0.32\alpha + 1.92$
0.001	$\alpha \leq -0.10$ $-0.10 < \alpha \leq 1$	2.075 $-0.27\alpha + 2.05$

Table 5-5 Equations Used to Approximate the Curves in the Britter-McQuaid Correlations Provided in Figure 5-14 for Puffs

Toxic Effect Criteria

- **Normal work hours criteria: TLV-TWA (ACGIH), PEL (OSHA)**
- **Probit correlations for wide ranges of concentrations and exposure times**
- **Criteria for short term exposures at higher than TLV-TWA values: available from many sources**
- **IDLH (NIOSH), 30 min exposures: SCBA required for higher levels**

ERPG Toxic Effect Criteria

- **← American Industrial Hygiene Association (AIHA): Emergency response planning guidelines (ERPG) for exposures up to 1 hour**
- **ERPG-1: mild transient effects**
- **ERPG-2: reversible health effects**
- **ERPG-3: without life-threatening effects**
- **Tab 5-6, pp. 201, 202**
- **Alternative guidelines in lieu of ERPG data: Tab 5-9, p 206**
- **EPA Toxic Endpoints based on ERPG-2**

Table 5-6 (continued)

Table 5-9 Recommended Hierarchy of Alternative Concentration Guidelines¹

EEGL Toxic Effect Criteria

- **National Research Council (NRC):** $\overline{\mathbf{0}}$ **Emergency exposure guidance levels (EEGL)**
- **Acceptable exposure levels for emergency condition tasks up to 1 or up to 24 hours**
- **Includes reversible effects that do not impair work performance**
- **Tab 5-7, p 204**

Table 5-7 Emergency Exposure Guidance Levels (EEGLs) from the National Research Council (NRC) (all values are in ppm unless otherwise noted)

Release Mitigation

- **Part of consequence modeling, Fig 4-1, p 110. Mitigation methods, Tab 5-10, p 214**
- **Mitigation measures depend on likelihood of a release**
- **Preventive: Inherent safety, process and mechanical integrity, training, maintenance, sensors, software**
- **Protective, reduce effect of incidents: curtains, foams, emergency response program**

Table 5-10 Release Mitigation Approaches¹

Release Mitigation Approaches¹ Table 5-10

¹Richard W. Prugh and Robert W. Johnson, Guidelines for Vapor Release Mitigation (New York: American Institute of Chemical Engineers, 1988).