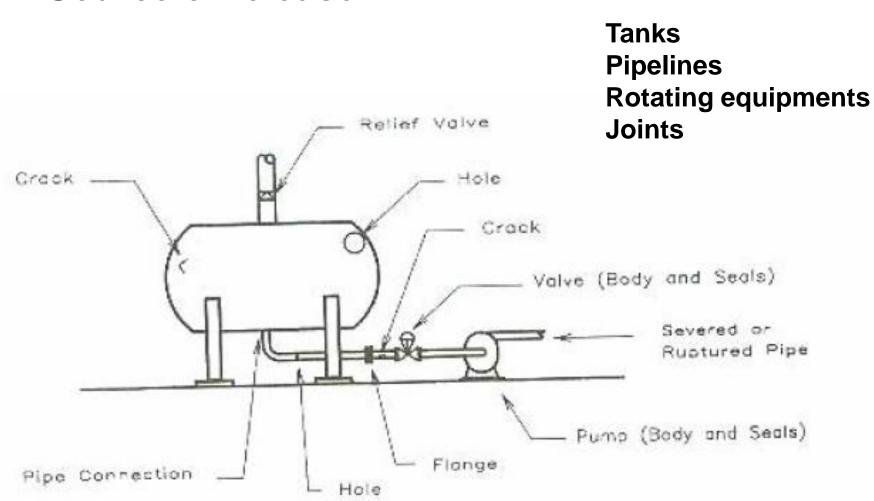
Source Models, Liquids



Source of release

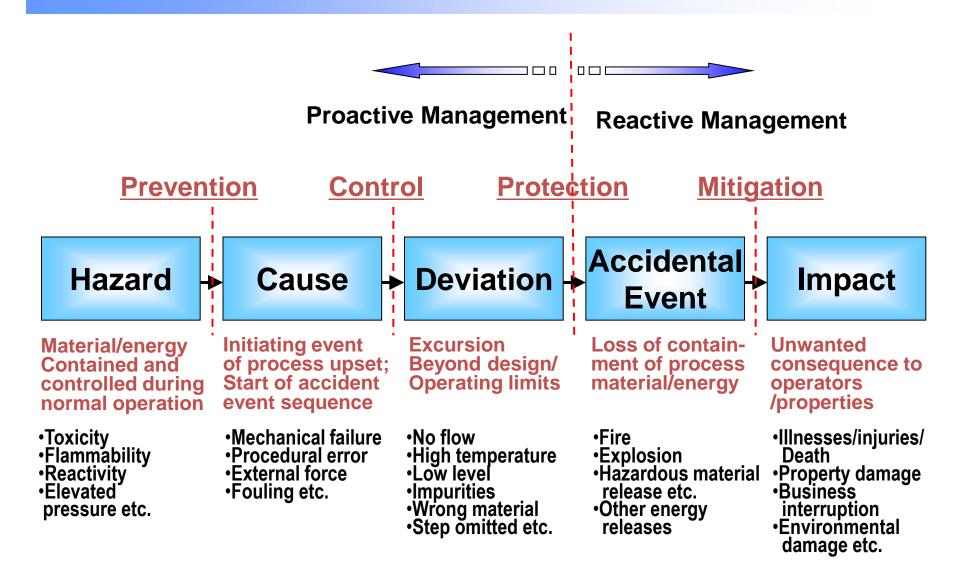
Source Models: Purpose I

Most incidents

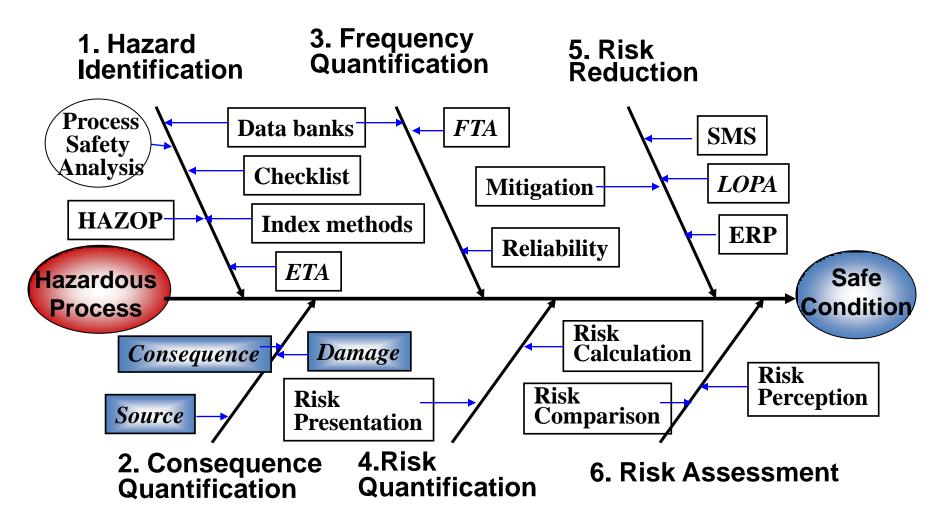
spills of reactive, flammable, and toxic materials.

Pipe ruptures, holes/cracks in tanks, flanges

Accidental Flow



Risk Analysis Methodology



Source Models: Purpose II

Source models estimate

rates of discharge, amounts released, state of discharge

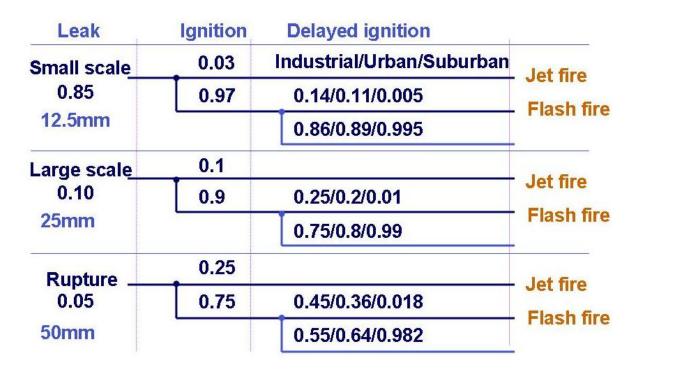
Sources of flashing, misting, evaporating, or boiling liquids followed by dispersions

Releases of gases, liquids, aerosols

Source Models: Purpose III

Effect model estimate

consequences of incidents: injuries, deaths, structural damages, environment.



Jet fire

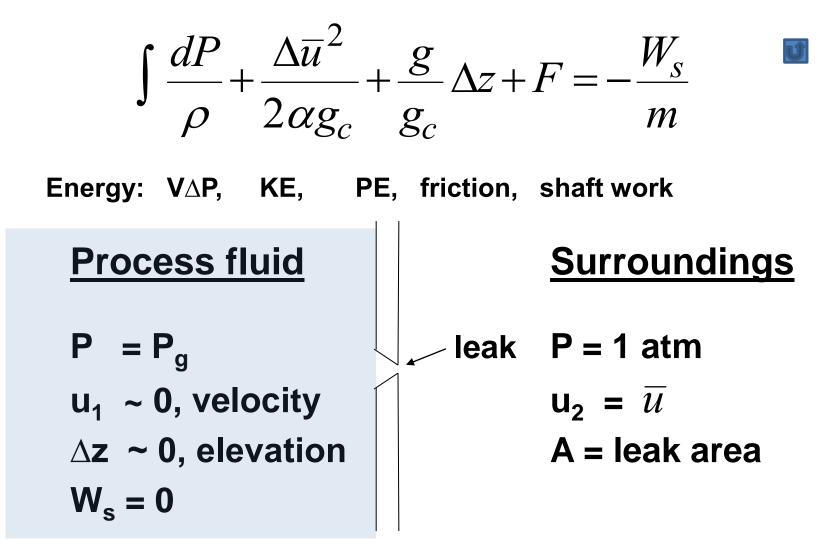
Pool fire

Source Models Treated

- Liquids from holes: pipes, tanks
- Liquid flow through pipes
- Gases from holes: pipes, tanks
- Gas flow through pipes
- Flashing liquids
- Liquid evaporation (already considered)
- Liquid boiling

Flow of Liquids through Holes

Mechanical energy balance for a fluid:



Energy balance for leaking to atmosphere

$$\frac{\Delta P}{\rho} + F + \frac{\overline{u}^2}{2\alpha g_c} = C_1^2 \left(\frac{\Delta P}{\rho}\right) + \frac{\overline{u}^2}{2\alpha g_c} = 0$$

Velocity profile factor, α , 0.5 (laminar) to 1 (turbulent)

Friction term, *F*, approx by discharge coefficient, P. 113, eqn 4-3, C_1 , from exp

Ave discharge velocity:
$$\overline{u} = C_0 \sqrt{\frac{2g_c P_g}{\rho}}$$
, $C_0 = C_1 \sqrt{\alpha}$

Mass flow rate from area A:

$$Q_m = \rho \bar{u}A = A C_0 \sqrt{2g_c \rho P_g}$$

Discharge Coefficient

- $\mathbf{L} C_0$ depends on the Reynolds number (a) and hole diameter (C_1).
- **4** Use known values of C_0 ,
 - 4 0.61 for sharp orifices and for large Re (exit velocity independent of hole size)
 - **Well-rounded nozzle 1**
 - **4** Short pipe attached to vessels 0.81
 - If unknown, use 1.0 to maximize the estimated flow for process safety applications.

Tank Discharge: Energy Balance

Energy balance for hole h_L below liquid level:

$$\left(\frac{\Delta P}{\rho} + \frac{g}{g_c}\Delta z + F\right) + \frac{\overline{u}^2}{2\alpha g_c} = C_1^2 \left(\frac{\Delta P}{\rho} + \frac{g}{g_c}\Delta z\right) + \frac{\overline{u}^2}{2\alpha g_c} = 0$$

Average discharge velocity:

$$\overline{u} = C_o \sqrt{2\left(\frac{g_c P_g}{\rho} + gh_L\right)}$$

Mass flow rate from hole of area A:

$$Q_m = \rho \bar{u}A = \rho A C_o \sqrt{2\left(\frac{g_c P_g}{\rho} + g h_L\right)}$$

Tank Discharge: Liquid Height

Mass of liquid above the leak with cross section area, A_t :

$$m = \rho A_t h_L$$

Rate of mass decrease in the tank:

$$\frac{dm}{dt} = \rho A_t \frac{dh_L}{dt} = -Q_m$$

Solve for and integrate
$$\frac{dh_L}{dt}$$
 to obtain $h_L(t)$

$$h_L = h_L^o - \frac{C_o A}{A_t} \sqrt{\frac{2g_c P_g}{\rho} + 2gh_L^o t + \frac{g}{2} \left(\frac{C_o A}{A_t} t\right)}$$

Set $h_L = 0$ and solve for t_e , time to empty to level of leak.

Tank Discharge: Leak Time, Q_m(t)

Time to leak at P_g : $t_e = \frac{1}{C_o g} \left(\frac{A_t}{A}\right) \left[\sqrt{2\left(\frac{g_c P_g}{\rho} + gh_L^o\right) - \sqrt{\frac{2g_c P_g}{\rho}}} \right]$

Time to leak at $P_g = 0$: $t_e = \frac{1}{C_o g} \left(\frac{A_t}{A}\right) \sqrt{2gh_L^o}$

Substitute $h_L(t)$ into original Q_m to obtain $Q_m(t)$, mass discharge rate at any time:

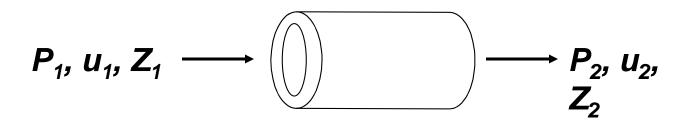
$$Q_m = \rho \bar{u}A = \rho A C_o \sqrt{2\left(\frac{g_c P_g}{\rho} + g h_L^o\right)} - \frac{\rho g C_o^2 A^2}{A_t} t$$

Initial height, h_L^o

Liquid Discharge from a Tank

- Calculation Equation Summary
 - Amount of material discharged to leak level
 - Time required for this material to leak
 - Maximum mass flow rate through the leak at t = 0
 - Average discharge velocity and mass flow rate at any time

Liquids in Pipes: Energy Balance



Mechanical energy balance, constant density:

$$\frac{\Delta P}{\rho} + \frac{\Delta \overline{u}^2}{2\alpha g_c} + \frac{g}{g_c} \Delta z + F = -\frac{W_s}{m}$$
Energy: V Δ P, KE, PE, friction, shaft work

The KE term can often be neglected.

Liquids in Pipes: Friction

Friction term is sum of all friction elements:

$$F = \left(\sum_{i} K_{f_i}\right) \frac{\overline{u}^2}{2g_c}$$

 K_{f_i} is excess head loss for element *i* in piping system for flow in pipe of length *L*, inside diameter, *d*:

 $K_f = \frac{4fL}{d}$ Fanning friction factor, *f*, is function of *Re* and \mathcal{E} , p.122, eqn 4-32 (Colebrook eqn)

Fanning Friction Factor

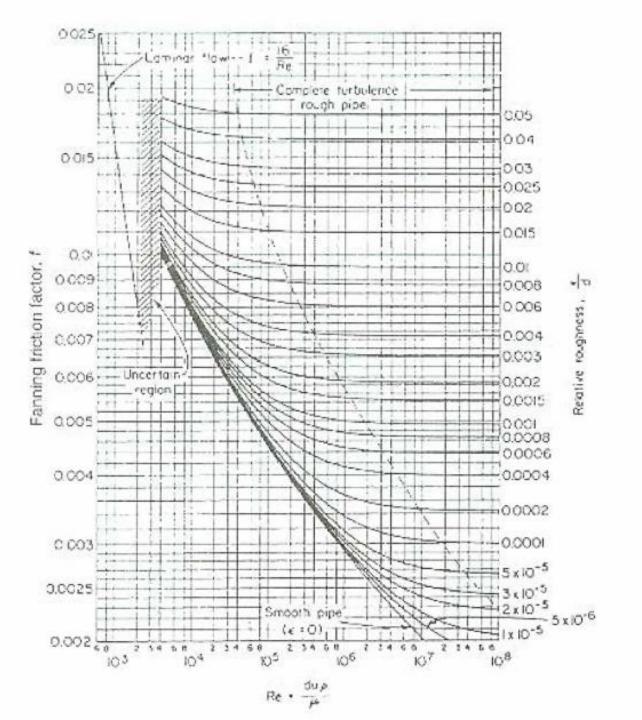
- *f(Re)* shown in Fig. 4-7, p. 123. Various regimes
- Laminar flow, *f* = 16/*R*e
- **4** Turbulent flow, Colebrook Equation

$$\frac{1}{\sqrt{f}} = -4\log\left(\frac{1}{3.7}\frac{\varepsilon}{d} + \frac{1.255}{R_{\rm e}\sqrt{f}}\right)$$

 \mathcal{E} is roughness factor; \mathcal{E}/d is relative roughness

For large *Re*, *f* is independent of *Re*: $\frac{1}{\sqrt{f}} = 4 \log \left(3.7 \frac{d}{\varepsilon} \right)$

For smooth pipe, $\mathcal{E} \sim 0$: $\frac{1}{\sqrt{f}} = 4 \log \frac{R_e \sqrt{f}}{1.255}$



2-K Method for Flow Friction

Equivalent pipe length method for all piping fittings:

$$L_{eq, total} = L_{st pipe} + \sum_{i} L_{eq,i}$$

2-K uses actual lengths and 2 parameters:

$$K_1, K_\infty$$

$$\begin{split} K_f &= \frac{4fL}{d} \text{, pipe lengths} \\ K_f &= \frac{K_1}{\text{Re}} + K_\infty \bigg(1 + \frac{1}{ID_{in}} \bigg) \text{, elbows, tees, valves} \\ K_f &= \frac{K_1}{\text{Re}} + K_\infty \text{, pipe entrances, exits} \end{split}$$

Depending on the *Re* regimes, may be simplified.

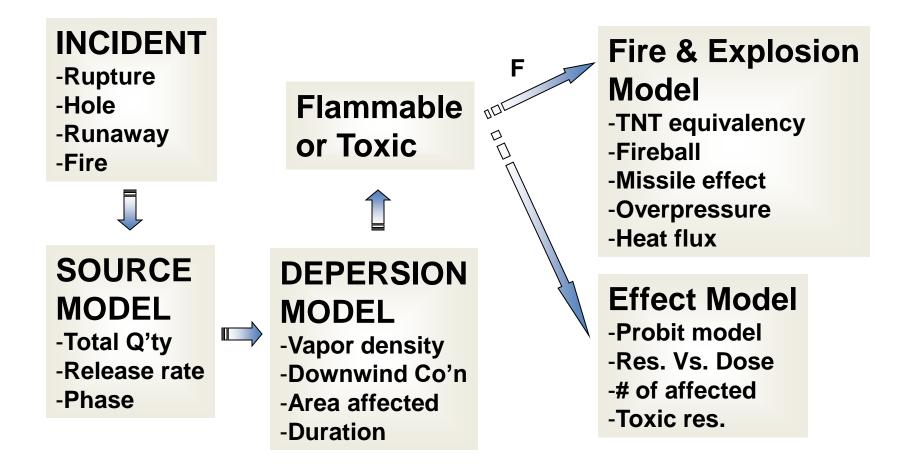
Pipe: Estimate Mass Flow Rate

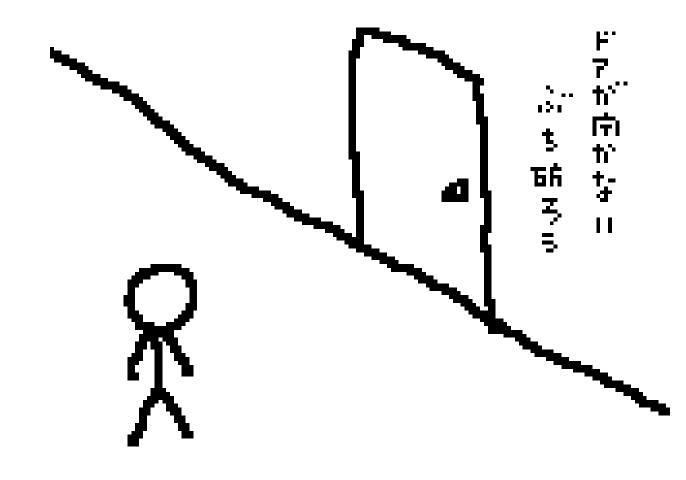
Summary

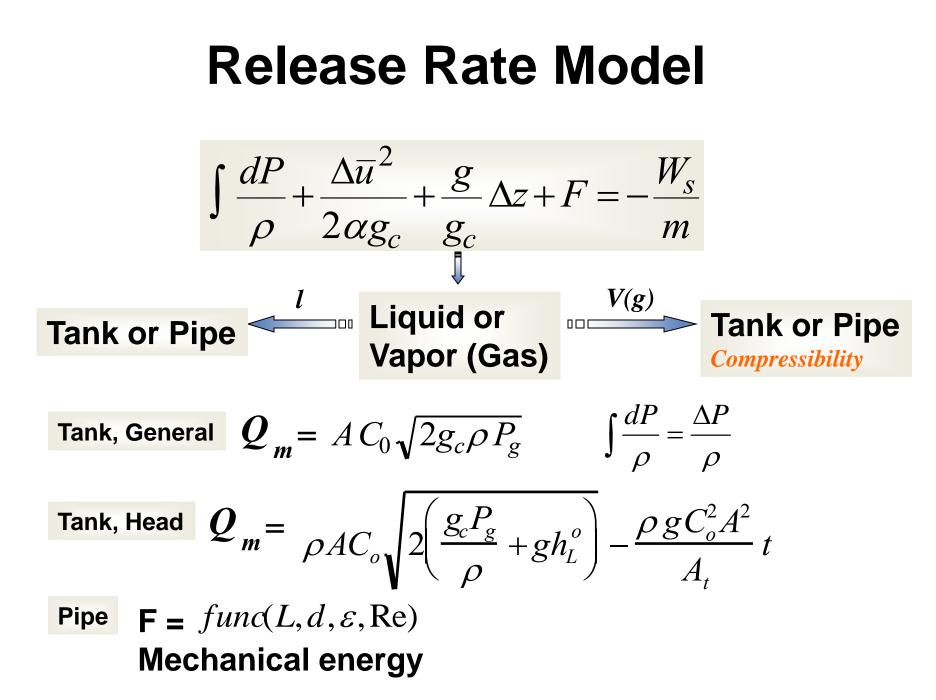
- 1. Obtain system info between *start* and *end* points: fittings, fluid properties, pressures, elevations, velocity
- 2. State energy balance for *start* and *end*; Drop KE term?
- 3. Include loss terms for *F*. Depending on flow regime, estimate or gue as at *end*.
- 4. Estimate *Re* and corresponding *f* and *F*
- 5. Substitute values into energy balance and calculate \overline{u}
- 6. If \overline{u} not ~ guessed value, return to Step 3 until converged
- 7. Calculate mass flow rate, source term: $\rho \overline{u}A = Q_m$
- **8.** Test the effect of approximations on \overline{u} and Q_m

Source Models, Gases

Consequence Analysis







Flow of Gases through Holes

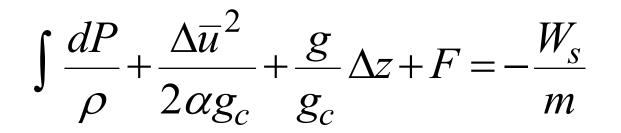
- Large changes in pressure and density, unlike liquids
- Throttle expansion through cracks
- $\int \frac{dP}{\rho} \neq \frac{\Delta P}{\rho}$ with large frictional losses and lower velocities, not treated here
- Free expansion with isentropic behavior approximated

important for safety analysis

Assume small potential energy changes,

 $\Lambda z \sim 0$

Mechanical Energy Balance



Process

 $P = P_o$ $u_1 \sim 0$ $\Delta z \sim 0$ $W_s = 0$

Surroundings (choked)

- $P_{ext} < P_{choked}$
- Gas at throat (choked)
 - u₂ = sonic velocity

 $P_{throat} = P_{choked}$

Free expansion: $\int \frac{dP}{\rho} + \frac{\overline{u}^2}{2\alpha g_c} + F = 0$

Isentropic Expansion

Incorporate friction term:

$$\int \frac{dP}{\rho} + F = C_1^2 \left(\int \frac{dP}{\rho} \right)$$

$$C_1^2 \int_{P_o}^{P} \frac{dP}{\rho} + \frac{\overline{u}^2}{2\alpha g_c} = 0$$

Ideal gas, isentropic expansion:

$$\frac{P}{\rho^{\gamma}} = \mathbf{a}, \quad \gamma = C_{\rho} / C_{v}$$

Integrate and solve for \overline{u} Mass flow rate:

 $\frac{1}{\sqrt{2/\gamma}}$ ($\frac{\sqrt{\gamma+1}}{\sqrt{\gamma+1}}$

$$Q_m = C_o A P_o \sqrt{\frac{2g_c M}{R_g T_o}} \frac{\gamma}{\gamma - 1} \left[\left(\frac{P}{P_o}\right)^{2/\gamma} - \left(\frac{P}{P_o}\right)^{(\gamma+1)/\gamma} - \left(\frac{P}{P_o}\right)^{(\gamma+1)/\gamma} \right]$$

Heat Capacity Ratio Values

Real gas:
$$C_P - C_V = \left[P + \left(\frac{\partial E}{\partial V} \right)_T \right] \left(\frac{\partial V}{\partial T} \right)_P$$

Perfect gas: E(T), PV = RT $\rightarrow C_P - C_V = R$

Atoms:
$$C_V = (3/2)R$$

 $\gamma = \frac{C_P}{C_V} = \frac{(3/2)R + R}{(3/2)R} = \frac{5}{3} = 1.67$

Molecules: $C_V = 3R$, nonlinear; (5/2)R, linear

Diatomic/triatomic (normal T)

$$\frac{C_P}{C_V} = \frac{3R + R}{3R} = \frac{4}{3} = 1.33, \text{ nonlinear}$$
$$\frac{(5/2)R + R}{(5/2)R} = \frac{7}{5} = 1.40, \text{ linear}$$

Choked Pressure

For safety assessments: need maximum flow rate

Differentiate Q_m by P/P_o and set to zero:

$$\frac{P_{choked}}{P_o} = \left(\frac{2}{\gamma+1}\right)^{\gamma/(\gamma+1)} \quad (P_{ext} < P_{choked}) \quad , \text{ function of } \gamma$$

Choked pressure: maximum downstream pressure resulting in the maximum flow. Sonic u at throat.

 \mathbf{Q}_{m} independent of downstream conditions

$$Q_{m,choked} = C_o A P_o \sqrt{\frac{\gamma g_c M}{R_g T_o} \left(\frac{2}{\gamma + 1}\right)^{(\gamma + 1)/(\gamma - 1)}}$$

Discharge Coefficient, C_o

- For non-choked flows: for sharp-edge holes, R_e > 30,000, use C_o = 0.61
- Choked flows: C_o increases as P decreases. Therefore:
- **4** For choked flows, use $C_o = 1$ **4** For C_o not known, use $C_o = 1$

Flow of Gases through Pipes

- Isothermal and adiabatic models predict similar results for most real cases
- The adiabatic model predicts larger values and is preferred for process safety estimations.
- **4 Mach number,** $Ma = \overline{u} / a$
- Speed of sound (ideal gas),

$$a = \sqrt{\gamma g_c R_g T / M}$$

Adiabatic Gas Flow Model

- Gas expansion decrease in pressure, increase in velocity, KE increases
- Temperature: tends to increase due to KE increase; tends to decrease due to friction
- Adiabatic choked flow: most important and most usual case for safety estimations

Adiabatic Choked Flow, Pipe

External, *P* < *P*_{choked}

 $\Delta z \sim 0; W_s = 0 \qquad \Delta Q = 0$ $P_1, T_1, u_1, Ma_1 \rightarrow \bigcirc \bigcirc \rightarrow P_{choked}, T_2, a, Ma_2 = 1$

Mass flux

Gas expansion factor

$$G = \frac{\dot{m}}{A} = Y_{g} \sqrt{\frac{2g_{c}\rho_{1}(P_{1} - P_{2})}{\sum K_{f_{i}}}}$$

$$Y_g = Ma_1 \sqrt{\frac{\gamma \sum K_{f_i}}{2}} \left(\frac{P_1}{P_1 - P_2}\right)$$

Calculation Procedure

- Use correlations for Y_g and sonic pressure drop ratio, $(P_1 - P_2)/P_1$, Tab. 4-4, p. 143 or Figs 4-13, 4-14
 - 1. Obtain gas and pipe system information, ΔP ,
 - **2.** Assume fully developed turbulent flow; find $f \sum K_{f_i}$
 - 3. Find $(P_1 P_2)/P_1$, Fig 4-13; check if sonic, $P_{ext} < P_2$; calculate P_2
 - 4. Determine Y_g from correlation
 - 5. Calculate mass flow rate, $AG = \rho \overline{u}A$
 - 6. Check flow assumption from value of *Re*

Flashing Liquids

- Liquids held at T above boil point, T_{b;}
 - P > 1 atm.
- Sudden release to lower pressure can be explosive.
- Model assumes adiabatic behavior
- Excess energy provides heat of vaporization to reduce T to T_b (model assumes no heat dissipated.)

Source Model for Liquid Vaporized

Excess energy of liquid (pure): $Q = m_L C_p (T_o - T_b)$

*T*_o: liquid temp before release

Mass of vaporized liquid:

$$m_{V} = \frac{Q}{\Delta H_{V}} = \frac{m_{L}C_{p}(T_{o} - T_{b})}{\Delta H_{V}}$$

Fraction vaporized:

$$f_V = \frac{m_V}{m_L} = \frac{C_p (T_o - T_b)}{\Delta H_V}$$

Source Model for Boiling Liquids

- Boiling rate determined by heat transfer from surroundings: ground, air, radiation
- Initial stage: heat flux, q_g, from ground based on thermal conductivity, k_s, and diffusivity, a_s, of soil; temp of soil, T_g, time after spill, t:

$$q_g = \frac{k_s(T_g - T)}{\sqrt{\pi\alpha_s t}}$$

4 Rate of boiling:

$$Q_m = \frac{q_g A}{\Delta H_V}$$

A, area of pool

