Risk Assessment

Components

- Identify hazards using PHA methods
- Identify scenarios for hazards to cause incidents, e.g., using HAZOP
- Assess consequences of events
- Estimate probabilities of events using failure rate data
- Risk comparisons, reductions, and risk management

The Problem

You have a very important appointment tomorrow at 9:00 a.m. The distance between your house and the interview location is 10 miles and under best conditions it would take you 15 minutes to get there by car.

What time will you leave your house?

Risk Table

Scenario Likelihood Consequence

Risk Table

Example

Scenario Likelihoo		Consequence (minutes delayed)
1. Car does not start	Low	5
2. Car breaks down enroute	Very low	30
3. Minor traffic congestion	High	
4. Severe traffic congestion	Moderate	20
5. Police stops you	Low	15
6. Minor accident	Low	30
7. Major accident	Very low	2 hours

Calibrating the Likelihood Example

- High Minor traffic congestion
 - **4**Three days in a week = 3/5 = 0.6
- 4 Moderate Severe traffic congestion
 - **4**Once every 2 weeks = 1/(2×5) = 0.1
- **4**Low Car does not start
 - **4**Once in 3 years = 1/(3×250 days) = 1/750 = 0.001
 - Police stops you
 - **4**Minor traffic accident
- Very Low Car breaks down enroute
 - **4**Once in 15 years = 1/(15×250) = 0.0003
 - Major traffic accident

Risk Quantification

Scenario	Likelihood	Delay Minutes	Departure Time
0	1-Σ π	0	8:45
1	0.001	5	8:40
2	0.0003	30	8:15
3	0.6	10	8:35
4	0.1	20	8:25
5	0.001	15	8:30
б	0.001	30	8:15
7	0.0003	120	6:45

Risk Quantification

A

Example

Scenario	Delay Minutes	Departure Time	Probability	Probability of Missing Appointment	Probability of On Time Arrival
0	0	8:45	0.2964	0.7036	0.2964
11		8:40	0.001	0.7026	0.2974
2	30	8:15	0.0003	0.0013	0.9987
3	10	8:35	0.6	0.1026	0.8974
4	20	8:25	0.1	0.0016	0.9984
5	15	8:30	0.001	0.1016	0.8984
6	30	8:15	0.001	0.0003	0.9997
7	120	6:45	0.0003	0.0000	1.000

Other Risk Parameters Example

- **Average Travel Time**
 - = 15 + er (Delay in Minutes) X (Probability)
 - = 15 + (5X0.001) + (30X0.0003) + (10X0.6) + (20X0.1)
 - + (15X0.001) + (30X0.001) + (120X0.0003)
 - = 23.1 minutes
- **4** Minimum Travel Time = 15 minutes
- **4** Maximum Travel Time = 135 minutes

FIGURE 1.3. Detail of data required for complexity of analysis.

Fault Tree Analysis

Fault tree analysis (FTA) is a deductive technique that focuses on one particular incident and then constructs a logic diagram of all conceivable event sequence that could lead to the incident.

FTA identifies ways that hazards can lead to incidents.

Fault Tree Analysis

4 Purpose

- To identify failure pathways, both mechanical and human that could lead to an incident.
- Applications
 - Can be used during design, modification, or operation of a facility
- Results
 - A set of logic diagrams that illustrate how certain combination failures and/or errors can result in specific incidents

Fault Tree Analysis

🗕 Data

 P&IDs, equipment drawings and specifications, operating procedures, knowledge of failure modes, and failure rate data

↓ Staff

Normally, one person is assigned to prepare a single fault tree for a given incident

4 Time

Preparation of fault trees can be very time consuming for large or complex facilities

Basic Components

Basic Event

A basic initiating fault (e.g., component failure)

Intermediate Event

Occurs as a result of events at a lower level acting through logic gates

Undeveloped

Undeveloped event due to lack of information or significance

"And" Gate

Output occurs if all input events occur

"Or" Gate

Output occurs if any input event occurs

Logic Diagram for Fire Triangle

Probability (parallel): $P = \prod P_i$

n

i=1

Process Hardware Failure Rate and Probability of Failure During (0, *t***)**

Time, t

Schematic of Hot Water Heater

Fault Tree Rupture of Hot Water Tank

Acceptability of Risk

- Acceptability of risks is judged by comparing the average individual risks with risks associated with some common activities and incidents.
 - **4** Two categories of risk are:
 - **4** Voluntary
 - Involuntary
 - Industrial workers are voluntary risk recipients.
 - Persons living in residential areas near the plant are involuntary risk recipients.

Comparison of Voluntary and Involuntary Risks

Voluncary	Voluncary			
Activity	Risk of Death per Person per Year (x 10 ⁻⁶)	Activity	Risk of Death per Ferson per Year (x 10 ⁻⁶)	
Smoking (20 cigarettes/	5.000	Influenza	200	
		Leukemia	80	
Hotorcycling	2,000	Run over by road vehicle	60	
Car racing	1,200	(UK)		
Drinking (1 bottle wine/ day	750	Run over by road vehicle (USA)	50	
Car driving	170	Floods (USA)	Z.Z	
Rock climbing	40	Tornadoes (Mid-West USA)	2.2	
Football	40	Earthquakes (California)	1.7	
Operation of PDSB's LPG	33	Storms (USA)	0.8	
Taking contraceptive	20	Bites of venomous creatures (UK)	0.2	
print		Lightning (UK)	0.1	
		Falling aircraft (USA)	0.1	
		Release from atomic power		
		(at site boundary) (USA)	0.1	
		(at 1 km) (UK)	0.1	
		Flooding of dikes (Holland)	0.1	
		Transport of petrol and chemicals (USA)	0.05	
		Falling aircraft (UK)	0.02	
		Transport of petrol and chemicals (UK)	0.02	

Acceptability of Risk

4 Voluntary Risk

- Society's acceptance of voluntary risk is about the same as acceptance of death by disease.
 - **4**1 x 10⁻⁶ fatalities per person hour of exposure, or
 - 48.76 x 10⁻³ fatalities per person year with continuous exposure (8,760 hours)
- A risk of 1 x 10⁻³ fatalities per person year is generally acceptable to industrial workers.

Involuntary Risk

Acceptable level of risk is about one one-thousandth of the value for voluntary exposure, i.e., about 1 x 10⁻⁶ fatalities per person year.

Acceptability of Risk I

- Each individual in the population has a different perception of risk, a different opinion as to the level of risk posed by various activities, and a different opinion on how much risk is acceptable
- **4** Factors influence individual perceptions of risk:
 - Cultural and educational background,
 - how much benefit the individual feels that will be received from the activity; i.e., the benefit received is sufficient to justify the risk.

Acceptability of Risk II

- Public's lack of understanding of risk indicators.
 - Accidents that result in multiple fatalities cause more public concern than accidents that cause only one or two fatalities but occur more often.
- Some members of the public may never be convinced that a hazardous materials facility is safe enough.
 - Most regulatory agencies take a realistic approach and are willing to license or approve facilities that satisfy their risk criteria.

Case Study

CHLORINE RAIL TANK CAR LOADING FACILITY

Source: Chemical Process Quantitative Risk Analysis, CCPS, AIChE, New York (1989)

Chlorine Rail Tank Car Loading Facility

- **4**Steps involved in the risk assessment:
- Data gathering
- Hazard scenario development
- Consequence analysis
- Probability of occurrence
- Risk estimation

Diagram of Liquid Cl₂ Rail Tank Car Loading Installation

Simplified Chlorine Rail Car Loading Procedures

Hazard Identification

- The risk assessment is based on specific chlorine release incidents.
 - To estimate public risk, localized incidents with consequences that do not extend beyond the boundary fence are not evaluated.
 - Major incidents of similar scale are grouped and represented as single incidents with frequency determined from contributions of all individual incidents in each group.

Representative Set of Incidents

INCIDENT NUMBER	INCIDENT DESCRIPTION					
1	Small liquid leakage (equivalent to 1/2-in., 12 mm hole) Duration = 10 min (estimated)					
	Causes: Valve leak (7 valves and associated flanges) Hose leak					
	Impact failure of liquid connecting pipe					
2	Small vapor leakage (equivalent to 1/2-in., 12 mm hole)					
	Duration = 10 min (estimated)					
	Causes: Valve leak (5 valves and associated flanges) Hose leak					
	Impact failure of vapor connecting pipe					
	Relief valve leak					
3	Large vapor leakage					
	Duration = 60 min (estimated time for fire fighting measure					
	to cool chlorine car and stop release)					
	Cause External fire lifts relief valve					

Summary of Representative Release Rate Estimates

INCIDENT	DESCRIPTION	ESTIMATED RELEASE RATE (kg/s)
1	Liquid leak	2.7
2	Vapor leak	0.26
3	Relief, vapor discharg	e 2.4

Downwind Center Line Ground Level Chlorine Concentrations for the Three Representative Incidents

INCIE LIQUII (2.7 kg/s	DENT 1 D LEAK s 10 min)	INCIE VAPOI (0.26 kg/	INCIDENT 2 VAPOR LEAK (0.26 kg/s 10 min)		T 3 RELIEF DISCHARGE /s 60 min)
x(m)	C(ppm)	x(m)	C(ppm)	x(m)	C(ppm)
100	2000	50	690	100	1700
200	550	64	430	150	830
230	430	100	190	200	490
250	370			250	330
300	270			300	240
				360	175
				400	145

Distance at Which Chlorine Concentration Reaches LC₅₀

Estimated Failure Frequency for Chlorine System Components

FAILURE	FAILURE
DESCRIPTION	FREQUENCY,
	AVERAGE SERVICE
	(events/year)
Valve leak	$1 \ge 10^{-5}$
Hose leak	5×10^{-4}
Impact failure of pipe ^a	$1 \ge 10^{-5}$
Relief valve leak at	1×10^{-4}
normal operating	
pressure	

Fault Tree for External Fire Around Chlorine Loading Facil ity Leading to Relief Valve Discharge of Chlorine (Incident No. 3)

Summary of Representative Incident Frequency Estimates

Summary of Representative Incidents with Associated Effect Zones and Frequencies

				EFFECT ZONE	
INCIDEN	Γ DESCRIPTION	Cl ₂ DISCHARGE	LEAK	DISTANCE TO	FREQUENCY
		RATE (kg/s)	DURATION (min)	LC ₅₀ (m)	OF OCCURRENCE (vr ⁻¹)
1	Liquid leak 1/2- in. equivalent	2.7	10	230	5.8 * 10 ⁻⁴
2	hole Vapor leak 1/2- in. equivalent	0.26	10	64	6.6 * 10 ⁻⁴
3	hole Vapor discharge from relief valve due to fire	2.4	60	360	3.0 * 10 ⁻⁶
	due to fire				

List of Incident Outcome Cases Assuming an 8-point Wind Rose, 1

INCIDENT

OUTCOME CASE

INCIDENT	INCIDENT FREQUENCY (yr ⁻¹)	NO.	WIND DIRECTION PROBABILITY	FREQUENCY (yr ⁻¹)	COMMENTS ^a
1	5.8×10^{-4}	1SW	0.125	7.3 x 10 ⁻⁵	А
		1W	0.125	7.3×10^{-5}	А
		1NW	0.125	7.3×10^{-5}	А
		1N	0.125	7.3×10^{-5}	В
		1NE	0.125	7.3×10^{-5}	В
		1E	0.125	7.3 x 10 ⁻⁵	В
		1SE	0.125	7.3×10^{-5}	В
		1 S	0.125	7.3 x 10 ⁻⁵	В

^aA, Effect zone affects populated area; B, effect zone does not affect populated area.

where N_i = number of fatalities resulting from incident outcome case i

 P_i = the total number of people within the effect zone for incidnet outcome case i

 $P_{f,i}$ = the probability of fatality within the effect zone for incident outcome case i

List of Incident Outcome Cases Assuming an 8-point Wind Rose, 2

			INCIDENT OUTCOME CASE		
INCIDENT	INCIDENT FREQUENCY (yr ⁻¹)	NO.	WIND DIRECTION PROBABILITY	FREQUENCY (yr ⁻¹)	COMMENTS ^a
2	6.6 x 10 ⁻⁴	2SW	0.125	8.2 x 10 ⁻⁵	В
		2W	0.125	8.2×10^{-5}	В
		2NW	0.125	8.2×10^{-5}	В
		2N	0.125	8.2×10^{-5}	В
		2NE	0.125	8.2×10^{-5}	В
		2E	0.125	8.2×10^{-5}	В
		2SE	0.125	8.2×10^{-5}	В
		2S	0.125	8.2×10^{-5}	В

^aA, Effect zone affects populated area; B, effect zone does not affect populated area.

where N_i = number of fatalities resulting from incident outcome case i

 P_i = the total number of people within the effect zone for incidnet outcome case i

 $P_{f,i}$ = the probability of fatality within the effect zone for incident outcome case i

List of Incident Outcome Cases Assuming an 8-point Wind Rose, 3

-			INCIDENT OUTCOME CASE		_
INCIDENT	INCIDENT FREQUENCY (yr ⁻¹)	NO.	WIND DIRECTION PROBABILITY	FREQUENCY (yr ⁻¹)	COMMENTS ^a
3	3.0×10^{-6}	3SW	0.125	3.8 x 10 ⁻⁷	A
		3W	0.125	3.8 x 10 ⁻⁷	Α
		3NW	0.125	3.8×10^{-7}	Α
		3N	0.125	3.8×10^{-7}	В
		3NE	0.125	3.8×10^{-7}	В
		3E	0.125	3.8×10^{-7}	В
		3SE	0.125	3.8×10^{-7}	В
		35	0.125	3.8 x 10 ⁻⁷	В

^aA, Effect zone affects populated area; B, effect zone does not affect populated area.

where N_i = number of fatalities resulting from incident outcome case i

 P_i = the total number of people within the effect zone for incidnet outcome case i

 $P_{f,i}$ = the probability of fatality within the effect zone for incident outcome case i

Individual Risk Contours around Cl₂ Loading Facility

Chlorine rail tank car Flammable liquids rail tank car **Rail line** Plant fence line Chlorine pipe rack Flammables pipe rack **Residential area: 400 people** uniformly distributed (approximately 10 people per acre). Other areas vacant. Level 1 Risk Contour Level 2 Risk Contour Level 3 Risk Contour

Effect Zones for Incident No. 3

Estimated Number of Fatalities for Incident Outcomes Cases Affecting the Populated Area

INCIDENT OUTCOME CASE	FREQUENCY F (yr ⁻¹)	ESTIMATED NUMBER OF FATALITIES
1SW	$7.3 \ge 10^{-5}$	13
1W	7.3×10^{-5}	14
1NW	$7.3 \ge 10^{-5}$	13
3SW	$3.8 \ge 10^{-7}$	20
3W	3.8×10^{-7}	38
3NW	3.8×10^{-7}	20
All others		0

Societal Risk Calculation and F-N Curve

Data

ESTIMATED CUMULATIVE NUMBER OF FREQUENCY FATALITIES ^a OF N OR MORE		INCIDENT	
		CASES	
		(yr⁻¹)	
N	> 38	0	None
20 <	N ≤ 38	3.8 x 10 ⁷	3W
14 <	N ≤ 20	1.1 x 10 ^{¯6}	3W, 3SW, 3NW
N	[≤] 14	7.4 x 10 ⁵	3W, 3SW, 3NW,
			1W
N	[≥] 13	2.2 x 10 ⁴	3W, 3SW, 3NW,
			1W, 1SW, 1NW
^a N mu	ist be ai	n integer value.	

Summary of Single Number Risk Measures and Risk Indices

RISK MEASURE VALUE Maximum individual $2.4 \text{ x } 10^{-5}/\text{yr } \text{R}_{\text{I}}$ risk Average individual risk Exposed population $1.2 \times 10^{-5}/\text{yr }\text{R}_{\text{I}}$ $7.5 \ge 10^{-6}/\text{yr } \text{R}_{\text{I}}$ Total population $0.14 \text{ fatalities}/10^8$ Fatal accident rate (FAR) man-hr exposure 3×10^{-3} fatalities/yr Average rate of death Equivalent social cost 4.9×10^{-3} Okrent 3.7×10^{-2} Netherlands