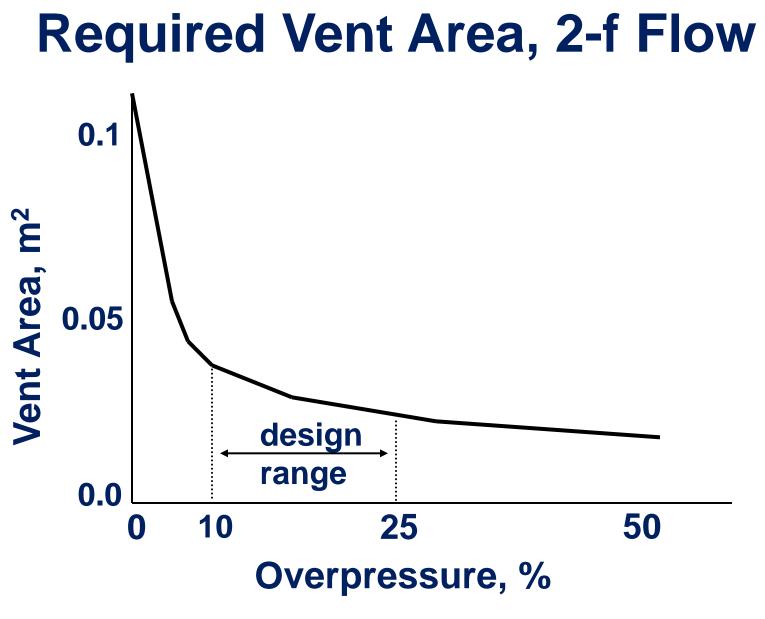

Relief System Sizing

Calculating Relief Size I


- Conventional spring-operated reliefs in liquid or vapor-gas service
- Rupture disc in liquid or vapor-gas service
- Two-phase flow during runaway rxn
- Reliefs for dust and vapor explosion
- Reliefs for external fire
- Reliefs for thermal expansion of process fluid

Calculating Relief Size II

Relief Area Requirements

- Minimum flow to hold valve seat in open position: 25-30 % of maximum flow
 - Low flow can lead to rapid opening and closing (*chattering*)
- Overpressures are designed to be 10 to 25 % above set pressures to prevent excessive vent sizes
- To hold pressures near the set pressures would require much larger vent sizes

METU-NCC

Spring Relief Area for Liquids

Assume orifice flow through the valve port:

$$Q_{v} = \overline{u} A = A C_{o} \sqrt{\frac{2g_{c} \Delta P}{\rho}}$$

Eqn 4-6, p. 114

$$A = \frac{Q_v}{\overline{u}} = \left[\frac{\operatorname{in}^2(\mathrm{psi})^{1/2}}{38.0\mathrm{gpm}}\right] \frac{Q_v}{C_o} \sqrt{\frac{\rho / \rho_{ref}}{\Delta P}}$$

- \bar{u} is the liquid velocity through the spring relief,
- C_{o} is the discharge coefficient,
- ΔP is the pressure drop across the relief, and
 - ρ is the liquid density

Computed Area for Liquids

- A is computed area for device sizing as contrasted to effective valve area during use
- Max pressure in the API equation is 25 % above the set pressure
- For C_o use the conservative value of 0.61 unless more information is available
- **4** K_v, K_p, K_b are correction factors for use of the API equation with various liquid viscosities, maximum pressures, and backpressure.

Spring Relief Area for Liquids

API correction factors included for wide applications:

$$A = \left[\frac{\text{in}^2 \text{psi}^{1/2}}{38 \text{gpm}}\right] \frac{Q_v}{C_k K_k K_b} \sqrt{\frac{\rho / \rho_{ref}}{1.25 P_s - P_b}}$$

A is the computed relief area (in²),

 C_{o} is the discharge coefficient (unitless),

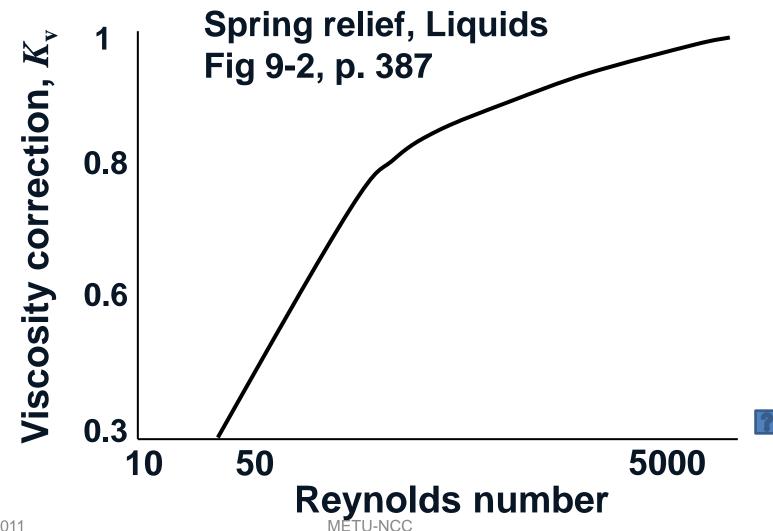
 $K_{\rm v}$ is the viscosity correction (unitless),

 $K_{\rm p}$ is the overpressure correction (unitless),

 $\vec{K_{\rm b}}$ is the backpressure correction (unitless),

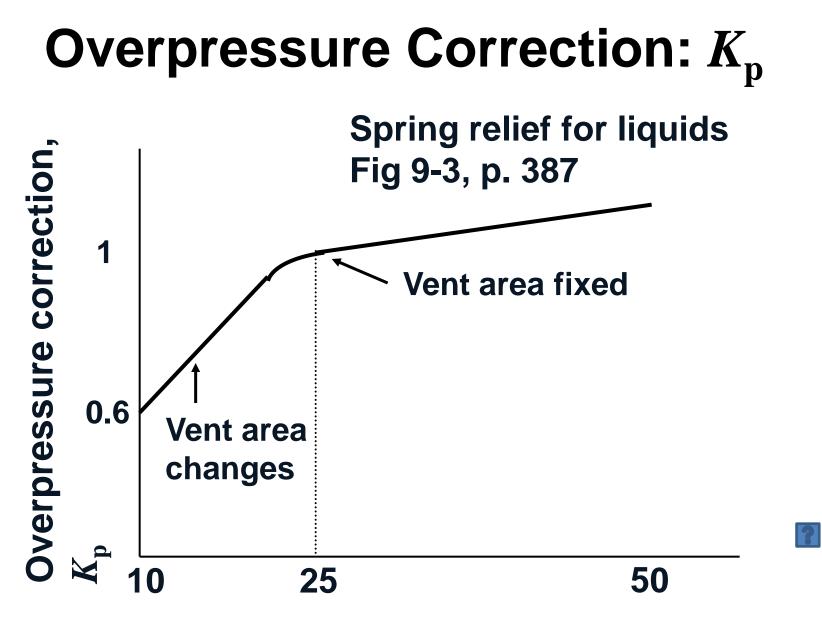
($\rho/\rho_{\rm ref}$) is the specific gravity of the liquid (unitless),

 P_s is the gauge set pressure (lb_f/in²)


 P_b , is the gauge backpressure (lb_f/in²)

Correct Area for Viscosity: *K*_v

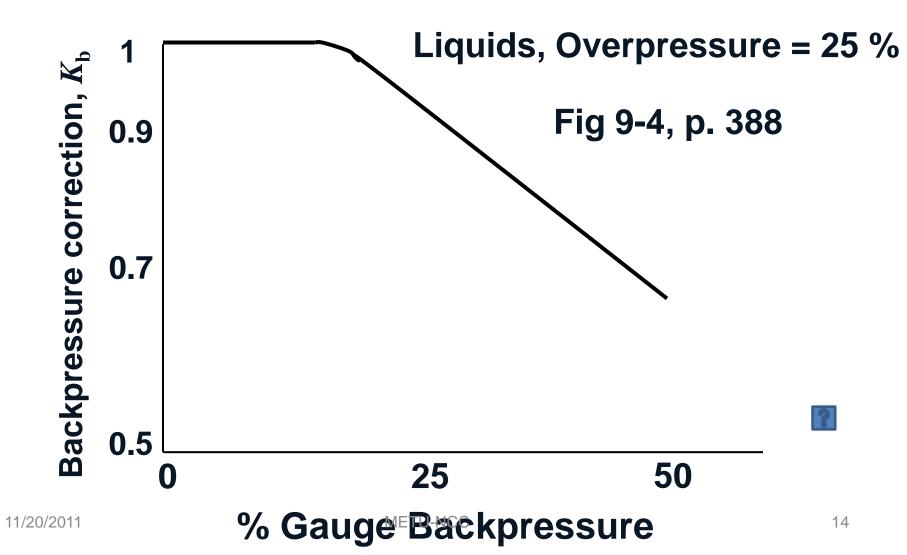
- Higher the viscosity the higher the friction losses through the valve
- Higher the viscosity, the smaller the Reynolds number, Re, and smaller the K_v and therefore the larger the required A
- \blacksquare R_e usually is > 5,000. Then K_v is ~ 1.
- **4** For low Re , K_v is a strong function of Re


$$K_{\rm v} = \sqrt{\frac{1}{\frac{170}{\text{Re}} + 0.98}}$$

Viscosity Correction Factor: *K*_v

Correct A for **Overpressure**: K_p

- **4** 1.25 P_s P_b = △P for 25 % overpressure (OP); use a correction factor, K_p , for OP within 10 - 50 %
- **4** OP correction factor: $K_p = 1$ for 25 % OP
- Above 25 %, the vent area is fixed, so flow rate change only with pressure drop: K_p is a weak function of pressure in this range
- Below 25 %, the vent area changes with pressure, so flow rate changes with pressure drop and with area: K_p is a strong function of pressure in this range.


11/20/2011

Overpressure, %

Correct Area for Backpressure: *K*_b

- P_b in basic API equation corrects for effects of backpressures in conventional valves (set pressure and flow rate
- Higher the backpressure, the lower the flow: larger the calculated required area, A
- For balanced bellows valves, a correction factor, K_b, must be included because the set pressure does not increase as backpressure increases
- **4** The higher the backpressure, the smaller the $K_{\rm b}$ and the larger the required A for a given $Q_{\rm v}$
- **4** Ex 9-1, p 388 relief sizing

K_b for Balanced-Bellows Reliefs

Spring Relief Valves for Gases

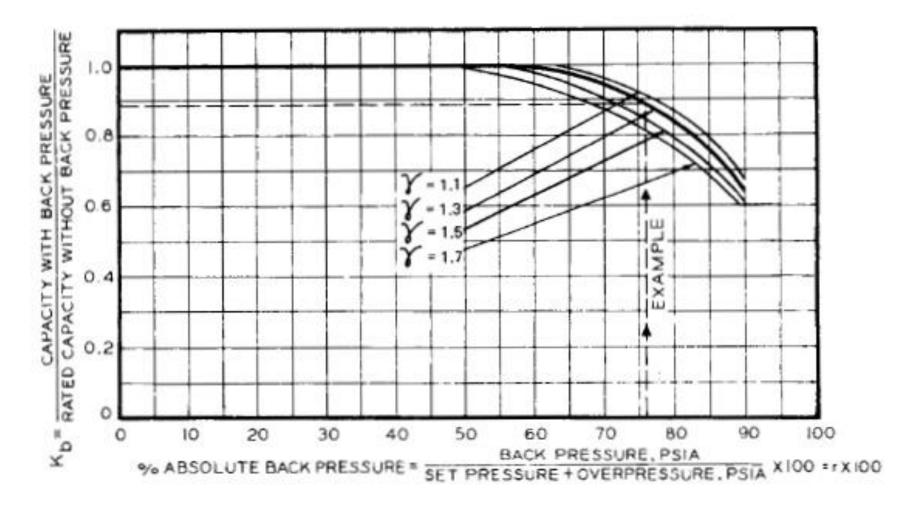
In general, flow is critical with $P_{ch} > P_{ext}$:

$$(Q_m)_{ch} = C_o A P_{\sqrt{\frac{\gamma g_c M}{R_g T} (\frac{2}{\gamma + 1})^{(\gamma + 1)/(\gamma - 1)}}}$$
Eqn 4-50 p. 133

$$A = \frac{Q_m}{C_o \ \chi K_b P} \sqrt{\frac{T z}{M}}$$

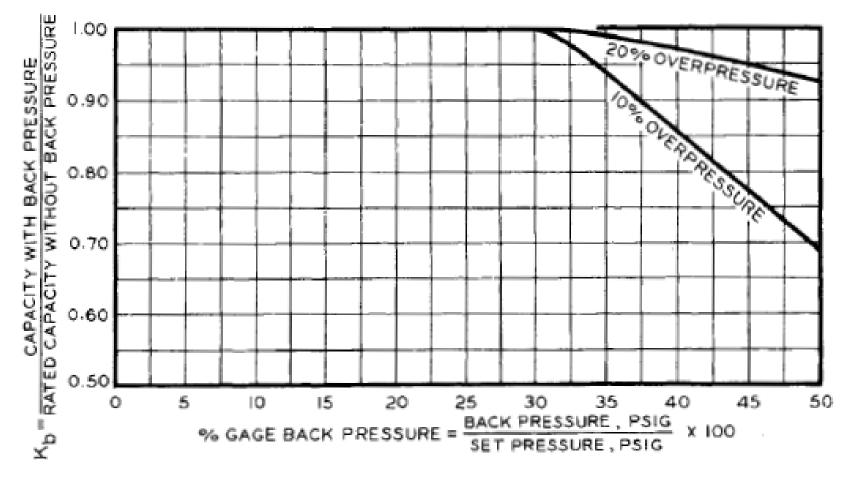
z, compressibility factorP, max absolute dischargepressure

$$\chi = \sqrt{\frac{\gamma g_c}{R_g} \left(\frac{2}{\gamma + 1}\right)^{(\gamma + 1)/(\gamma - 1)}}$$


Vent Area Equation for Gases

- **4** Separate $K_{\rm b}$ correction for each value type:
 - Standard valves, Fig 9-5, balanced bellows, Fig 9-6
 - For larger backpressure, $K_{\rm b}$ smaller and A larger
- $\mathbf{4} C_{0}$: if not known use 0.975
- **4** *M* is average molecular weight
- **4** *P* is the maximum absolute relieving pressure:

$$P = P_{\text{max}} + 14.7$$


4 ASME safety guidelines, P_s = gauge set pressure:

$$P_{\text{max}} = 1.1P_{\text{s}}$$
, unfired vessels
 $P_{\text{max}} = 1.2P_{\text{s}}$, vessels exposed to fire
 $P_{\text{max}} = 1.33P_{\text{s}}$, piping, Ex 9-2, p 392

Backpressure correction $K_{\rm b}$ for conventional springtype reliefs in vapor or gas service. Source: API RP 520

METU-NCC

Backpressure correction K_b for balanced-bellows reliefs in vapor or gas service. Source: API RP 520

Rupture Disks for Liquids

Use expression for spring relief values for liquids

- Discharge directly to atmosphere or short piping:

$$A = \left[\frac{\operatorname{in}^{2}(\operatorname{psi})^{1/2}}{38.0 \operatorname{gpm}}\right] \frac{Q_{v}}{C_{o}} \sqrt{\frac{\rho / \rho_{ref}}{\Delta P}} \qquad \text{Eqn 9-3, p. 385}$$

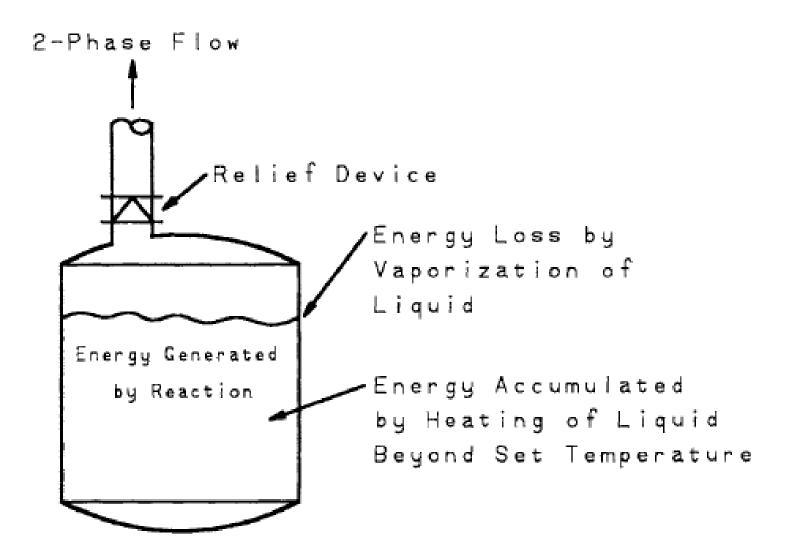
4 Discharge to a relief system:

Flow through the system of pipes and other components must be analyzed as considered in study of source terms.

Rupture Disks for Gases

4 Use expression for spring relief values for gases **4** For low backpressure levels with no $K_{\rm b}$ factor:

$$A = \frac{Q_m}{C_o \chi P} \sqrt{\frac{Tz}{M}}$$


Eqn 9-13, p. 394

Assumes $C_o = 1$

- For significant backpressure levels as into a containment system:
 - Analyze discharge and flow through the entire containment system. Ex 9-3,4, p 395

Two-Phase Relief Behavior

- Choked, two-phase flow through relief orifice
- Two-phase flow through containment system
- Runaway generally includes flashing during relief; \Delta H_v removed (reaction is *tempered*)
- **4** Reactor system, large vol/area, ~ adiabatic
- Energy removal only by vaporization and discharge

A tempered reaction system

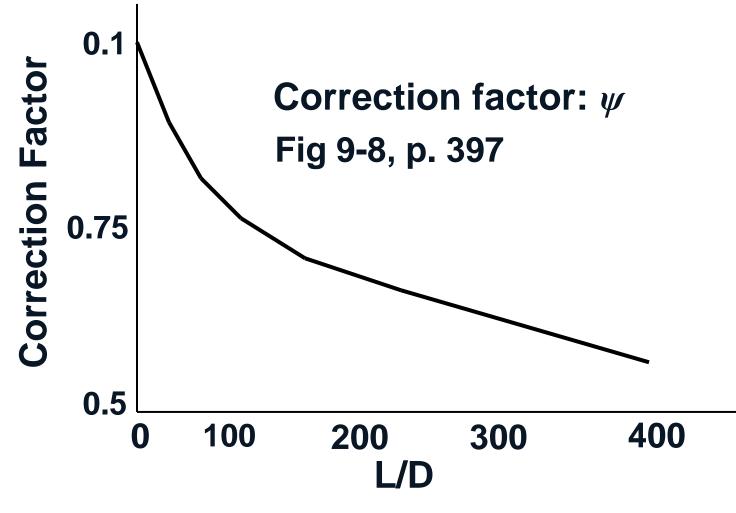
METU-NCC

Two-Phase Mass Discharge

Liquids at their saturation pressure, saturation temperature, T_s, the two-phase mass flow rate:

$$Q_{\rm m} = \frac{\Delta H_{\rm v} A}{v_{\rm fg}} \sqrt{\frac{g_{\rm c}}{T_{\rm s} C_{\rm p}}}$$

Eqn 4-104, p. 156


$$v_{\rm fg} = \Delta \overline{V}^{\rm fg}$$

Mass flux with L/D correction factor, ψ, Fig 9-8, p. 397:

$$G_{\rm T} = 0.9\psi \frac{\Delta H_{\rm v}}{v_{\rm fg}} \sqrt{\frac{g_{\rm c}}{C_{\rm p}T_{\rm s}}}$$

Empirical 0.9 factor to match data for homogeneous venting

Correction for 2-f Flashing Flow in Pipes

METU-NCC

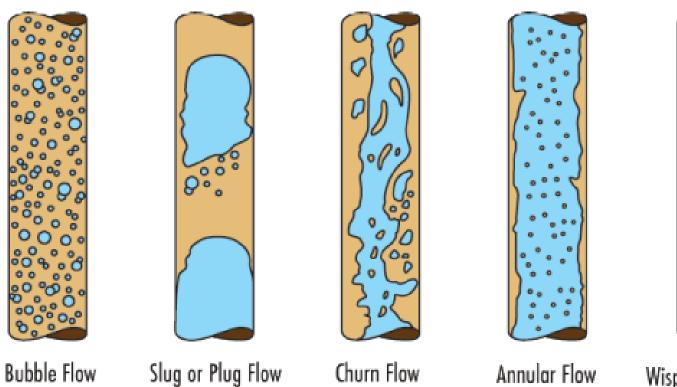
Two-Phase Mass Discharge

4 Clausius Clapyron: $\frac{dP}{dT} = \frac{\Delta H_v}{Tv_{fg}}$

$$G_{\rm T} = 0.9\psi \frac{\Delta P}{\Delta T} \sqrt{\frac{g_{\rm c} T_{\rm s}}{C_{\rm p}}}$$

 $\psi = 1$ for an orifice

$$A = m_{\rm o} \dot{q} / G_{\rm T} \left(\sqrt{\frac{V}{m_{\rm o}} \frac{\Delta H_{\rm v}}{v_{\rm fg}}} + \sqrt{C_{\rm v} \Delta T} \right)^2 m_{\rm o} = \text{mas}$$


s before release

With CC equation: $A = m_{o} \dot{q} / G_{T} \left(\sqrt{\frac{V}{m_{o}}} T_{s} \frac{dP}{dT} + \sqrt{C_{v}} \Delta T \right)^{2}$ generated by process, removed by discharge adsorbed by evaporate

Heat terms: qadsorbed by evaporate ΔT due to ΔP (OP)

11/20/2011

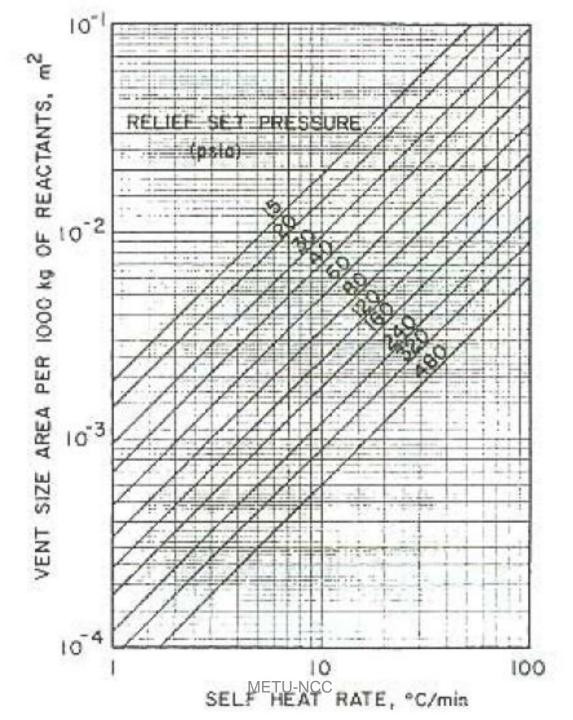
MFTU-NCC

Wispy Annular Flow

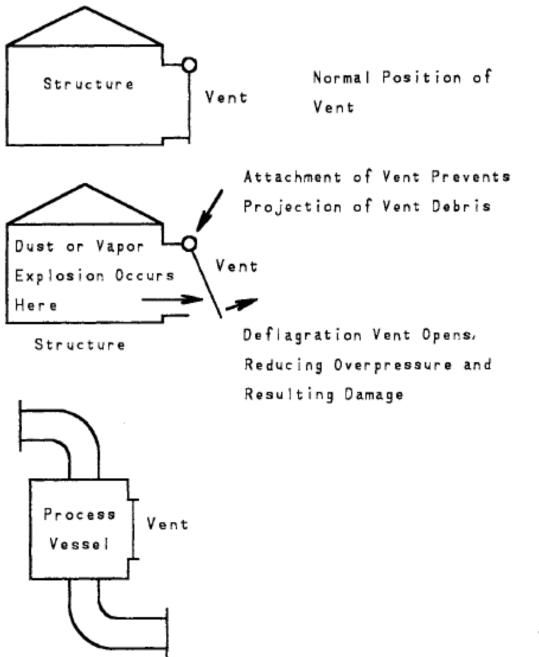
0

Patterns of two phase flow

Thermal Reaction Behavior


Measure heat input rate using a calorimeter, such as VSP, Fig 8-8, p. 366

$$q = 0.5C_{\rm v} \left[\left(\frac{dT}{dt} \right)_{\rm s} + \left(\frac{dT}{dt} \right)_{\rm m} \right]$$


- Measure heating rate at the set pressure and the heating rate at the maximum pressure
- Understand behavior of two-phase releases
- Avoid scenarios that can result in two-phase releases, e.g., overheated polymerization reactor

Nomograph Sizing Method

- A graphical method by Fauske for quick estimates of two-phase release areas uses only this information:
 - Heating rate at the set temperature, $(dT/dt)_s$
 - Set pressure
 - Mass of reactants
- **4**Obtain a vent size area using Fig 9-9, p. 403
 - Assumes a discharge piping of L/D = 400 (a discharge coefficient = 0.5), and 20 % OP.
- Adjust an area estimate for other L/D ratios and OP values.

29

9-6 Deflagration Venting for Dust and Vapor Explosions

Vents for Low-Pressure Structures

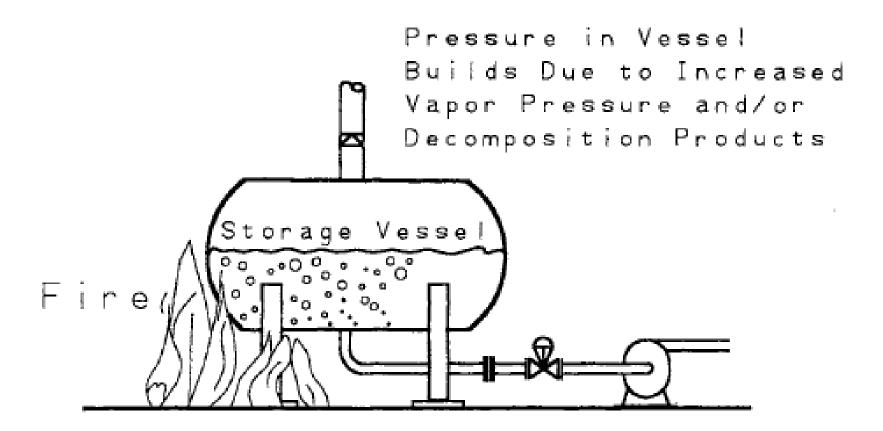
$$A = \frac{C_{\text{vent}}^* L_1 L_2}{\sqrt{P}} \qquad \text{by Runes}$$

A is the required vent area,

- C^*_{vent} is a constant that depends on the nature of the combustible material,
 - L_1 is the smallest dimension of the rectangular building structure to be vented,
 - L_2 is the second smallest dimension of the enclosure to be vented, and
 - *P* is the maximum internal pressure that can be withstood by the weakest member of the enclosure.

11/20/2011

METU-NCC

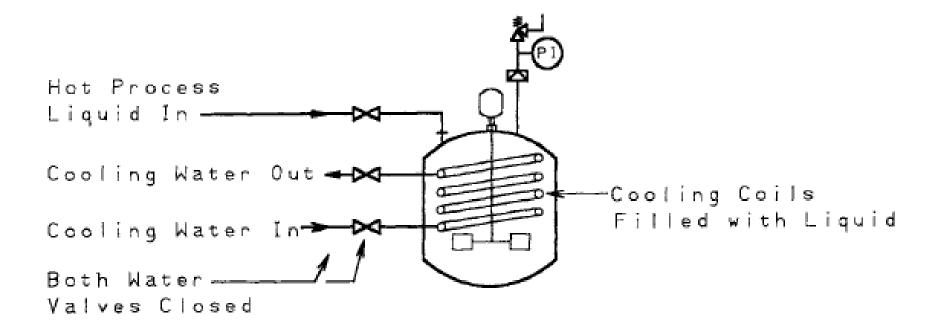

o Vents for High-Pressure Structures

$$K_{\rm G} \text{ or } K_{\rm St} = \left(\frac{dP}{dt}\right)_{\rm max} V^{1/3}$$

 $K_{\rm G}$ is the deflagration index for gases and vapors, $K_{\rm st}$ is the deflagration index for dusts, $(dP/dt)_{\rm max}$ is the maximum pressure increase, determined experimentally, and V is the volume of the vessel.

Reliefs for Fired Reactors

- Reactors exposed to external fires: heating and boiling of process liquids and excessive pressures
- Usually exposure at a small part of reactor surface: two-phase foam is smaller amount than from a runaway reaction
- Help prevent two-phase flow during external fire relief: allow a large vapor space above the liquid
- If reactor not protected, firing can lead to reactor failure and result in a BLEVE (p. 282) and if liquid is flammable, a VCE (p. 281)
- Security results more from inherently safer designs



$$A = \frac{Qm_{\rm o}v_{\rm fg}}{G_{\rm T}V\Delta H_{\rm v}}$$

- Q is the constant heat input rate,
- $G_{\rm T}$ is the mass flux through the relief,
 - A is the area of the relief,
- $m_{\rm o}$ is the liquid mass in the vessel,
 - *V* is the volume of the vessel,
- $\Delta H_{\rm v}$ is the heat of vaporization of the liquid.

Reliefs for Thermal Expansion of Process Fluids

- Liquids contained process piping expands and damage pipes & vessels
 - **4** Ex; Cooling coil in reactor
 - Contamination of reactor
 - Subsequent corrosion
 - Substantial plant outage
 - **4** Large repair expense

Heat Transfer from Hot Vessel Fluid to Cooling Liquid Increases Cooling Liquid Temperature Leading to Thermal Expansion.

Reliefs for Thermal Expansion of Process Fluids

$$\beta = \frac{1}{V} \left(\frac{dV}{dT} \right)$$

Then, the volumetric expansion rate is expressed

$$Q_{v} = \frac{dV}{dt} = \frac{dV}{dT}\frac{dT}{dt} = \beta V \left(\frac{dT}{dt}\right)$$

Energy balance with external heating

$$mC_P \frac{dT}{dt} = UA(T - T_a)$$

Reliefs for Thermal Expansion of Process Fluids

Then, the volumetric expansion rate is expressed

$$Q_v = \frac{\beta V}{mC_P} UA(T - T_a) = \frac{\beta}{\rho C_P} UA(T - T_a)$$

Homework due on Jan/6(Thu) Crowl, Problems 9-1, 2, 5, 19, 28