6. Flow Systems (p. 107)

Limiting reactant A

- Concentration -- Flow System:

$$C_{\rm A} = \frac{F_{\rm A}}{v} = \frac{\text{moles/time}}{\text{liters/time}} = \frac{\text{moles}}{\text{liters}}$$

- Liquid phase

 $v = v_0$

6. Flow Systems II

Species	Initial (mol)	Change (mol)	Remaining (mol)
Α	$F_{ m A0}$	$-(F_{A0}X)$	$F_{\rm A}=F_{\rm A0}-F_{\rm A0}X$
В	$F_{\rm B0} = \Theta_{\rm B} F_{\rm A0}$	$-\frac{b}{a}(F_{A0}X)$	$F_{\rm B} = F_{\rm A0} \left(\Theta_{\rm B} - \frac{b}{a} X \right)$
С	$F_{\rm C0} = \Theta_{\rm C} F_{\rm A0}$	$\frac{c}{a}(F_{A0}X)$	$F_{\rm C} = F_{\rm A0} \left(\Theta_{\rm C} + \frac{c}{a} X \right)$
D	$F_{\rm D0} = \Theta_{\rm D} F_{\rm A0}$	$\frac{d}{a}(F_{A0}X)$	$F_{\rm D} = F_{\rm A0} \left(\Theta_{\rm D} + \frac{d}{a} X \right)$
Inert	$F_{\rm I0} = \Theta_{\rm I} F_{\rm A0}$		$F_{\rm I0} = \Theta_{\rm I} F_{\rm A0}$
Totals	$F_{ m T0}$	$F_{\rm T} =$	$F_{\rm T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) F_{\rm A0} X$
Mar/17		2011 Spring	$(u u u)_{2}$

6. Flow Systems III

\odot Eqns for conc'n in flow systems

- $C_{\rm A} = \frac{F_{\rm A}}{v} = \frac{\text{moles/time}}{\text{liters/time}} = \frac{\text{moles}}{\text{liters}}$

- In general

$$C_{A} = \frac{F_{A}}{v} = \frac{F_{A0}(1-X)}{v}$$

$$C_{B} = \frac{F_{B}}{v} = \frac{F_{B0} - (b/a)F_{A0}X}{v}$$

$$C_{C} = \frac{F_{C}}{v} = \frac{F_{C0} + (c/a)F_{A0}X}{v}$$

$$C_{C} = \frac{F_{C}}{v} = \frac{F_{C0} + (c/a)F_{A0}X}{v}$$

$$C_{D} = \frac{F_{D}}{v} = \frac{F_{D0} + (d/a)F_{A0}X}{v}$$

6. Flow Systems IV

Liquid phase concentrations

- For liquid, volume change of rxn is negligible when no phase change take place,

2011 Spring

6. Flow Systems V

 \circ Rxn in gas phase with volume change 1

- Either V or v do vary in some system

 $N_2 + 3H_2 \Leftrightarrow 2NH_3$

- Batch reactor with variable volume 1
 - $PV = ZN_T RT$
 - where V = volume
 - N_T = total number of moles
 - T = Temperature, K
 - P = total pressure, atm
 - Z = compressibility factor

R = gas constant = 0.08206 dm³·atm/mol·K

6. Flow Systems VI

- \circ Rxn in gas phase with volume change 2
 - Batch reactor with variable volume 2
 - at time t = 0
 - $\boldsymbol{P}_{0}\boldsymbol{V}_{0}=\boldsymbol{Z}_{0}\boldsymbol{N}_{T0}\boldsymbol{R}\boldsymbol{T}_{0}$
 - In general $V = V_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{Z}{Z_0}\right) \frac{N_T}{N_{T0}}$
 - Total number of moles $N_T = N_{T0} + \delta N_{A0} X$ where

$$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$

 $\delta = \frac{\text{Change in total number of moles}}{\text{Mole of A reacted}}$

6. Flow Systems VII

- \circ Rxn in gas phase with volume change 3
 - Batch reactor with variable volume 3

$$\frac{N_{\rm T}}{N_{\rm T0}} = 1 + \frac{N_{\rm A0}}{N_{\rm T0}} \delta X = 1 + \delta y_{\rm A0} X = 1 + \varepsilon X$$

where $\varepsilon = \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) \frac{N_{\rm A0}}{N_{\rm T0}} = y_{\rm A0} \delta$ $\varepsilon = y_{\rm A0} \delta$

Holds for both batch & flow systems

$$\varepsilon = \frac{N_{\mathrm{T}f} - N_{\mathrm{T}0}}{N_{\mathrm{T}0}}$$

= Change in total number of moles for comlpete conversion Total moles fed

6. Flow Systems VIII

• Rxn in gas phase with volume change 4

- Batch reactor with variable volume 4
- in terms of volume

$$V = V_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{Z}{Z_0}\right) (1 + \varepsilon X)$$

compressibility factor will not change significantly

$$V = V_0 \left(\frac{P_0}{P}\right) (1 + \varepsilon X) \frac{T}{T_0}$$

6. Flow Systems IX

- \circ Rxn in gas phase with volume change 5
 - Flow reactor with variable volume 1

 $PV = ZN_T RT$

total concentration

$$C_T \left(= \frac{N_T}{V} \right) = \frac{F_T}{v} = \frac{P}{ZRT}$$

• entrance condition with negligible compressibility change

$$v = v_0 \left(\frac{F_T}{F_{T0}}\right) \frac{P_0}{P} \left(\frac{T}{T_0}\right)$$

in general

$$C_{j} = C_{T0} \left(\frac{F_{j}}{F_{T}}\right) \frac{P}{P_{0}} \left(\frac{T_{0}}{T}\right)$$

6. Flow Systems X

• Rxn in gas phase with volume change 6

- Flow reactor with variable volume 2

• concentration of species j is $C_i = F_i/v$

$$C_{j} = \frac{F_{A0} \left(\Theta_{j} - \nu_{j} X\right)}{\nu_{0} \left(1 + \varepsilon X\right) \frac{P_{0}}{P} \left(\frac{T}{T_{0}}\right)}$$

$$C_{j} = \frac{C_{A0} \left(\Theta_{j} - \nu_{j} X\right)}{1 + \varepsilon X} \left(\frac{P_{0}}{P}\right) \frac{T}{T_{0}}$$

6. Flow Systems XI

- \circ Example: Calculate ϵ
 - For the gas phase reaction,

 $\mathbf{2A} + \mathbf{B} \to \mathbf{C}$

the feed is equal molar in A and B. Calculate ϵ .

Solution

A is the limiting reactant

 $\mathbf{A} + \frac{1}{2}\mathbf{B} \rightarrow \frac{1}{2}\mathbf{C}$

$$\delta = \frac{1}{2} - 1 - \frac{1}{2} = -1$$

 $\varepsilon = y_{A0}\delta = (1/2)(-1) = -0.5$

6. Flow Systems XII

- Stoichiometric Table production of ethyl benzene 1
 - 2Ethylene + Toluene → Ethylenebenzene + Propylene
 - Gas feed consists of 25% toluene and 75% ethylene.
 - a) Set up a stoichiometric table
 - b) Write the rate of reaction solely as a function of conversion
 - * Assume the reaction is elementary with k_T = 250 (dm⁶/mol²·s). The entering pressure is 8.2 atm and the entering temperature is 227°C and the reaction takes place isothermally with no pressure drop.

6. Flow Systems XIII

- \odot Stoichiometric Table production of ethyl benzene 2 2Ethylene + Toluene \rightarrow Ethylenebenzene + Propylene
 - Basis of calculation
 - Entering concentrations of ethylene and toluene
 - What are ϵ and δ
 - Row in the stoichiometric table for toluene
 - Row in the stoichiometric table for ethylene
 - The complete stoichiometric table including total molar flow rates
 - Volumetric flow rate in terms of conversion
 - Conc of toluene and ethylene in terms of conversion
 - -r_A solely as a function of conversion

6. Flow Systems Stoichiometry Table

Species	Initial (mol)	Change (mol)	Remaining (mol)
Α	$F_{ m A0}$	$-(F_{A0}X)$	$F_{\rm A}=F_{\rm A0}-F_{\rm A0}X$
В	$F_{\rm B0} = \Theta_{\rm B} F_{\rm A0}$	$-\frac{b}{a}(F_{A0}X)$	$F_{\rm B} = F_{\rm A0} \left(\Theta_{\rm B} - \frac{b}{a} X \right)$
С	$F_{\rm C0} = \Theta_{\rm C} F_{\rm A0}$	$\frac{c}{a}(F_{A0}X)$	$F_{\rm C} = F_{\rm A0} \left(\Theta_{\rm C} + \frac{c}{a} X \right)$
D	$F_{\rm D0} = \Theta_{\rm D} F_{\rm A0}$	$\frac{d}{a}(F_{A0}X)$	$F_{\rm D} = F_{\rm A0} \left(\Theta_{\rm D} + \frac{d}{a} X \right)$
Inert	$F_{\rm I0} = \Theta_{\rm I} F_{\rm A0}$		$F_{\rm I0} = \Theta_{\rm I} F_{\rm A0}$
Totals	$F_{ m T0}$	F_{T} =	$= F_{\rm T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) F_{\rm A0} X$
Mar/17		2011 Spring	$(u u u u)_{14}$