4. Applications of the Design Equations for Continuous-Flow Reactor I

○ 1st order dependence

$$-r_{A} = kC_{A} = kC_{A0}(1-X)$$

• k is specific constant, ftn of only Temp. C_{A0} , entering concentration

4. Applications of the Design Equations for Continuous-Flow Reactor II

- Reactor size of CSTR and PFR
 - Raw data

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
-r _A (mol/m³s)	0.45	0.37	0.30	0.195	0.113	0.079	0.05
(1/-r _A)(m³s/mol)	2.22	2.70	3.33	5.13	8.85	12.7	20

- Manipulated

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
-r _A (mol/m³s)	0.45	0.37	0.30	0.195	0.113	0.079	0.05
(1/-r _A)(m³s/mol)	2.22	2.70	3.33	5.13	8.85	12.7	20
[F _{A0} /-r _A](m ³)	0.89	1.08	1.33	2.05	3.54	5.06	8.0

4. Applications of the Design Equations for Continuous-Flow Reactor II

Reactor sizing

Plots for sizing CSTR and PFR

5. Reactors in Series I

○ CSTRs in series 1

 \circ Given -r_A as a function of conversion, one can also design any sequence of reactors

moles of A reacted up to a point i moles of A fed to first reactor

Only valid if there are no side streams

- **5. Reactors in Series II**
- CSTRs in series 2
 - Reactor 1

In - Out + Generaton = 0

$$F_{A0} - F_{A1} + r_{A1}V_1 = 0$$

molar flow rate of A at point 1 is

$$F_{A1} = F_{A0} - F_{A0} X_1$$

$$V_1 = F_{A0} \left(\frac{1}{-r_{A1}}\right) X_1$$

- Reactor 2

In - Out + Generaton = 0

$$F_{A1} - F_{A2} + r_{A2}V_2 = 0$$

molar flow rate of A at point 2 is

$$F_{A2} = F_{A0} - F_{A2011 \text{ Spring}} X_{2011 \text{ Spring}}$$

Feb/28

5. Reactors in Series III

• CSTRs in series 3

- Combining & rearranging

$$V_{2} = \frac{F_{A1} - F_{A2}}{-r_{A2}} = \frac{(F_{A0} - F_{A0}X_{1}) - (F_{A0} - F_{A0}X_{2})}{-r_{A2}}$$

$$V_{2} = \frac{F_{A0}}{-r_{A2}}(X_{2} - X_{1})$$

$$I_{2} = \frac{F_{A0}}{-r_{A2}}(X_{2} - X_{1})$$

$$I_{3} = \frac{F_{A0}}{-r_{A2}}(X_{2} - X_{1})$$

$$I_{4} = \frac{F_{A0}}{-r_{A2}}(X_{A} - X_{A})$$

$$I_{4} =$$

5. Reactors in Series IV

• CSTRs in series 4

Large number of CSTRs in series
 ⇒ PFR approximation

5. Reactors in Series V

PFRs in series By definition

5. Reactors in Series VI

\odot Consider a PFR between two CSTRs

5. Reactors in Series VII

o Example 1

- For the irreversible gas-phase reaction: the following correlation was determined from laboratory data (the initial concentration of A is 0.2 g mol/L):

For X ≤ 0.5:
$$\frac{10^{-1}}{-r_{A}} = 3.0 \frac{m^{-1} \cdot s}{mol}$$

For X > 0.5: $\frac{10^{-8}}{-r_{A}} = 3.0 + 10(X - 0.5) \frac{m^{3} \cdot s}{mol}$

The volumetric flow rate is 5 m³/s.

a. Over what range of conversions are the plug-flow reactor and CSTR volumes identical?

5. Reactors in Series VIII

o Example 1

b. What conversion will be achieved in a CSTR that has a volume of 90 L?

- **c.** What plug-flow reactor volume is necessary to achieve 70% conversion?
- d. What CSTR reactor volume is required if effluent from the plug-flow reactor in part (c) is fed to a CSTR to raise the conversion to 90%?

o Example 2

5. Reactors in Series IX

o Example 2

 Pure A is fed at a volumetric flow rate of 1000 dm³ /h and at a concentration of 0.005 mol/dm³ to an existing CSTR, which is connected in series to an existing tubular reactor.

5. Reactors in Series X

○ Example 2

- The reciprocal rate vs. conversion given

