2. Conversion and Reactor Sizing

- \odot Definition of Conversion, X
- **O Batch Reactor Design Equations**
- **O Design Equations for Flow Reactors**
 - CSTR. PFR, PBR
- Applications of the Design Equations for Continuous-Flow Reactors
- **O** Reactors in Series

1. Definition of Conversion (p.38)

- \odot Define conversion and space time.
- Write the mole balances in terms of conversion for a batch reactor, CSTR, PFR, and PBR.
- Size reactors either alone or in series once given the molar flow rate of A, and the rate of reaction, r_A , as a function of conversion, X
- General stoichiometric relationships
- Basis of calculation $aA+bB \rightarrow cC+dD$
 - limiting reactant A

$$A + \frac{b}{a}B \to \frac{c}{a}C + \frac{d}{a}D$$

Conversion of species A

$$X_A = \frac{\text{Moles of A reacted}}{\text{Moles of A feed}}$$

1. Definition of Conversion II

- $_{\odot}$ The conversion X of species A in a reaction
 - the number of moles of A reacted per mole of A fed,
 ie. V = (moles reacted/moles A fed)

X = (moles reacted/moles A fed)

$$X_{A} = \frac{(N_{A0} - N_{A})}{N_{A0}} \text{ for Batch}$$
$$= \frac{(F_{A0} - F_{A})}{F_{A0}} \text{ for Flow}$$

- What is the maximum value of conversion?
 - Irreversible reactions, the complete conversion, i.e.
 X = 1.0.
 - Reversible reactions, the equilibrium conversion,
 i.e. X = X_e

2. Batch Reactor Design Equations I

General Mole Balance on System Volume V

 $\begin{bmatrix} Moles \text{ of } A \\ reacted \\ (Consumed) \end{bmatrix} = \begin{bmatrix} Moles \text{ of } A \text{ fed} \end{bmatrix} \cdot \begin{bmatrix} Moles \text{ of } A \text{ reacted} \\ Moles \text{ of } A \text{ fed} \end{bmatrix}$ $\begin{bmatrix} Moles \text{ of } A \\ reacted \\ (Consumed) \end{bmatrix} = \begin{bmatrix} N_{A0} \end{bmatrix} \cdot \begin{bmatrix} X \end{bmatrix}$ $\begin{bmatrix} Moles \text{ of } A \end{bmatrix}$

2. Batch Reactor Design Equations II

• The number of moles of A in the reactor after a conversion X

$$N_{A} = N_{A0} - N_{A0} X = N_{A0} (1 - X)$$

- No spatial variation $\frac{dN_A}{dt} = r_A V$
- Reactant A is disappearing - Or $-\frac{dN_A}{dt} = 0 - N_{A0} \frac{dX}{dt}$ $-\frac{dN_A}{dt} = (-r_A)V$ $N_{A0} \frac{dX}{dt} = (-r_A)V$

2. Batch Reactor Design Equations III

• For a constant volume batch reactor $V = V_0$

$$\frac{1}{V_0}\frac{dN_A}{dt} = \frac{d(N_A/V_0)}{dt} = \frac{dC_A}{dt}$$

- Constant volume batch reactor, $\frac{dC_A}{dr_A} = r_A$
- Rearrangement

$$dt = N_{A0} \frac{dX}{-r_A V}$$

- Time *t* necessary to obtain a conversion *X*

$$t = N_{A0} \int_0^X \frac{dX}{-r_A V}$$

3. Design Equations for Flow Reactor I

• At steady state

 $[F_{A0}] \cdot [X] = \frac{\text{Moles of A fed}}{\text{time}} \cdot \frac{\text{Moles of A reacted}}{\text{Moles of A fed}}$ $[F_{A0} \cdot X] = \frac{\text{Moles of A reacted}}{\text{time}}$ $\begin{bmatrix} Molar flow rate \\ at which A is \\ fed to the system \end{bmatrix} = \begin{bmatrix} Molar rate at which \\ A is consumed \\ within the system \end{bmatrix} - \begin{bmatrix} Molar flow rate \\ at which A leaves \\ the system \end{bmatrix}$ $\begin{bmatrix} F_{A0} \end{bmatrix} = \begin{bmatrix} F_{A0} X \end{bmatrix}$ - $|F_{A}|$ - Rearrangement $F_{A} = F_{A0}(1 - X)$

3. Design Equations for Flow Reactor II

 \circ For liquid phase system

$$F_{\rm A0} = C_{\rm A0} v_0$$

• For gas phase system $C_{A0} = \frac{P_{A0}}{RT_0} = \frac{y_{A0}P_0}{RT_0}$ • Or $F_{A0} = v_0 C_{A0} = v_0 \frac{y_{A0}P_0}{RT_0}$

where C_{A0} = entering concentration, mol/dm³ y_{A0} = entering mole fraction of A P_0 = entering total pressure, e.g., kPa P_{A0} = $y_{A0}P_0$ = entering partial pressure of A, kPa T_0 = entering temperature, K v_0 = volumetric flow rate Feb/28 R = ideal gas constant

8

3. Design Equations for Flow Reactor III

 \circ CSTR

$$F_{A0} - F_{A} + r_{A}V = 0$$

$$F_{A0} - F_{A} = F_{A0}X$$

$$V = \frac{F_{A0}X}{(-r_{A})_{exit}}$$

• **PFR**

$$F_{A} = F_{A0} - F_{A0} X$$

$$F_{A0} \frac{dX}{dV} = -r_{A}$$

$$\int \frac{dF_{A}}{dV} = r_{A}$$

$$V = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$$

3. Design Equations for Flow Reactor IV

• **PBR**

$$F_{A} = F_{A0} - F_{A0} X$$

$$F_{A0} \frac{dX}{dW} = -r'_{A}$$

$$\int \frac{dF_{A}}{dW} = r'_{A}$$

$$W = F_{A0} \int_{0}^{X} \frac{dX}{-r'_{A}}$$

Summary of Design Equations

Reactor	Design Equations	Graph
Batch	$N_{A0} \frac{dX}{dt} = -r_A V t = N_{A0} \int_0^X \frac{dX}{-r_A V}$	
CSTR	$V = \frac{F_{A0}X}{-r_A}$	
PFR	$F_{A0}\frac{dX}{dV} = -r_A \qquad V = F_{A0}\int_0^X \frac{dX}{-r_A}$	
PBR	$F_{A0} \frac{dX}{dW} = -r'_{A}$ $W = F_{A0} \int_{0}^{X} \frac{dX}{-r'_{A}}$	x w

4. Applications of the Design Equations for Continuous-Flow Reactor I

○ 1st order dependence

$$-r_A = kC_A = kC_{A0}(1-X)$$

• k is specific constant, ftn of only Temp. C_{A0} , entering concentration

4. Applications of the Design Equations for Continuous-Flow Reactor II

- $_{\odot}$ Reactor size of CSTR and PFR
 - Raw data

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
-r _A (mol/m³s)	0.45	0.37	0.30	0.195	0.113	0.079	0.05
(1/-r _A)(m³s/mol)	2.22	2.70	3.33	5.13	8.85	12.7	20

- Manipulated

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
-r _A (mol/m³s)	0.45	0.37	0.30	0.195	0.113	0.079	0.05
(1/-r _A)(m³s/mol)	2.22	2.70	3.33	5.13	8.85	12.7	20
[F _{A0} /-r _A](m ³)	0.89	1.08	1.33	2.05	3.54	5.06	8.0

4. Applications of the Design Equations for Continuous-Flow Reactor II

Reactor sizing

Plots for sizing CSTR and PFR

5. Reactors in Series

 $_{\odot}$ Given -r_A as a function of conversion, one can also design any sequence of reactors

 $f_i = \frac{\text{moles of A reacted up to a point i}}{\text{moles of A fed to first reactor}}$

Only valid if there are no side streams

- Consider a PFR between two CSTRs

