10. Catalysis & Catalytic Reaction

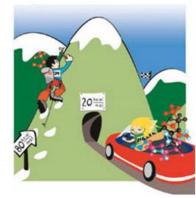
- Basic Define
 - Catalyst, catalytic mechanism, rate limit step.
- **o Catalytic Mechanism**
 - Describe the steps
 - Derive a rate law and a mechanism and rate limiting step consistent with the experimental data
- Use Regression to discriminate between reaction rate laws and mechanisms

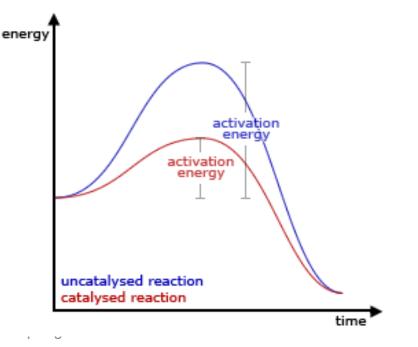
10. Catalysis & Catalytic Reaction

- Size isothermal reactors for reactions with Langmuir-Hinschelwood kinetics
- Catalyst deactivation
 - Type and the reactor types
 - Describe schemes that can help offset the deactivation
- Catalyst decay and conversion
 - CSTRs and PFRs with temperature-time trajectories, moving bed reactors, and straight through transport reactors.
- Describe the steps in Chemical Vapor Deposition (CVD)

1. Catalysis I

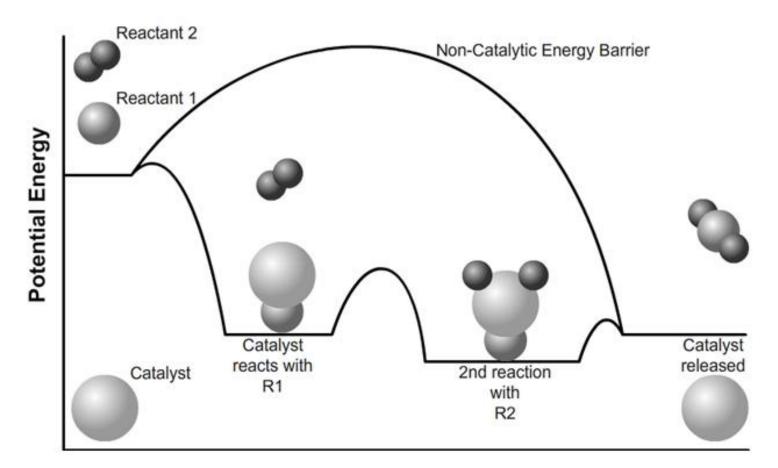
- History
 - Over 2000 years
 - wine, cheese, bread
 - Jons Jakob Berzelius (1835)
 - small amount of foreign source could greatly affect the course of chemical reactions
 - Wilhelm Ostwald (1894)
 - substances accelerating the rate of chemical reactions without being consumed
- USD 3.5 billion/ yr, 2007


1. Catalysis II


Definitions

- Catalyst
- a substances affecting the rate of reactions but emerges from the process unchanged
- usually by promoting a different mechanism

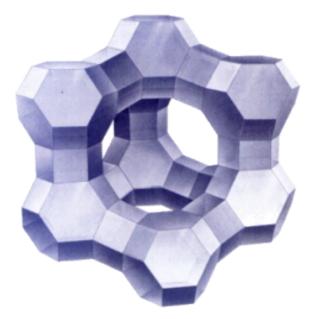
2(


- Catalysis
- the occurrence, study, and use of catalysts and catalytic process

1. Catalysis III

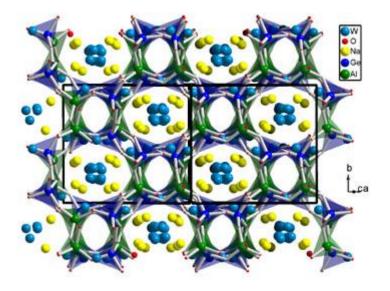
O Definitions 2

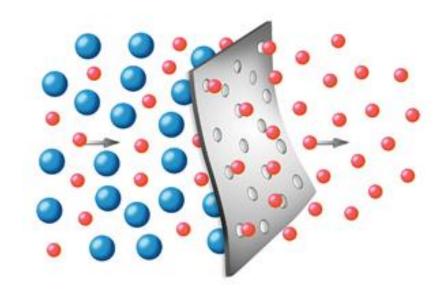
1. Catalysis IV


- **Catalyst Properties**
 - Large interfacial area
 - reaction occurs at the fluid-solid interface
 - Typical catalysts
 - inner porous structure
 - ex) silica-alumina cracking catalyst
 - pore volume of 0.6 cm³/g with avg diameter of 4 nm
 ≡ 300 m²/g
 - Raney nickel catalyst for hydrogenation
 - Molecular sieves zeolite revery high selectivity
 - Monolithic catalyst sufficient active

1. Catalysis V

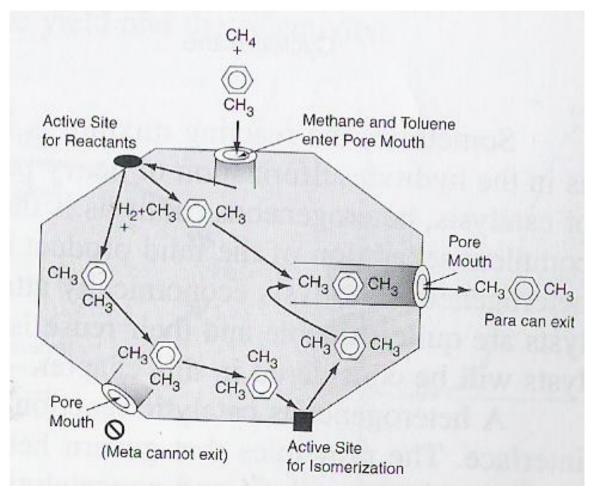
Molecular Sieve 1

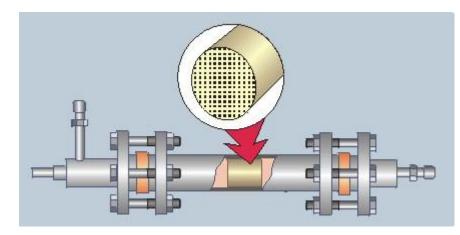

Molecular Sieve Type A

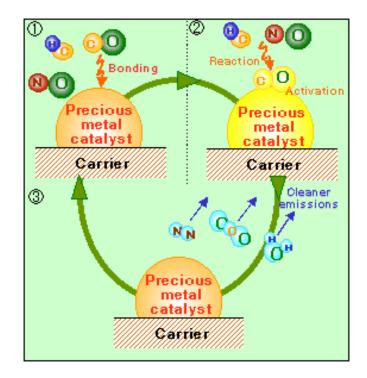


Molecular Sieve Type X

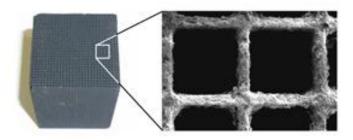
1. Catalysis VI


$_{\odot}$ Molecular Sieve 2

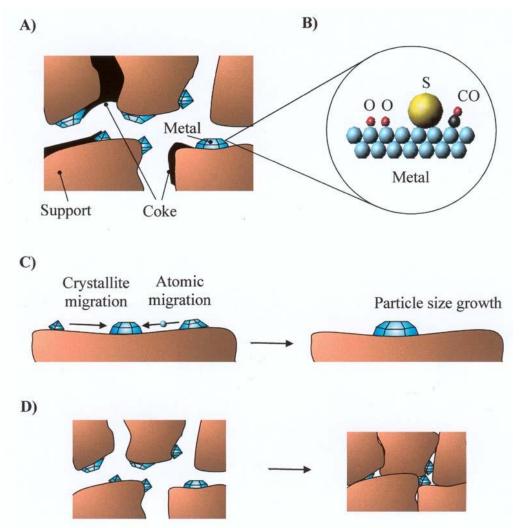

1. Catalysis VII


\circ Molecular Sieve 3



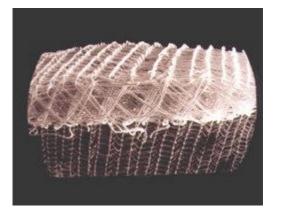

1. Catalysis VIII

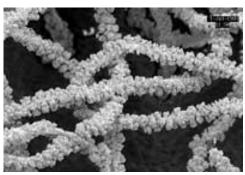
Monolithic Catalyst

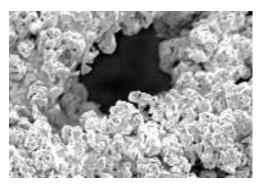

1. Catalysis IX

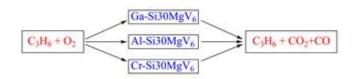
- Supported Catalyst
 - Support
 - structural part of less active material(s)
 - Promoters
 - small amount of ingredients, increase activity
 - Examples
 - Pt-on-Al for petroleum reforming, Vanadium peroxide on silica for producing sulfuric acid

1. Catalysis X

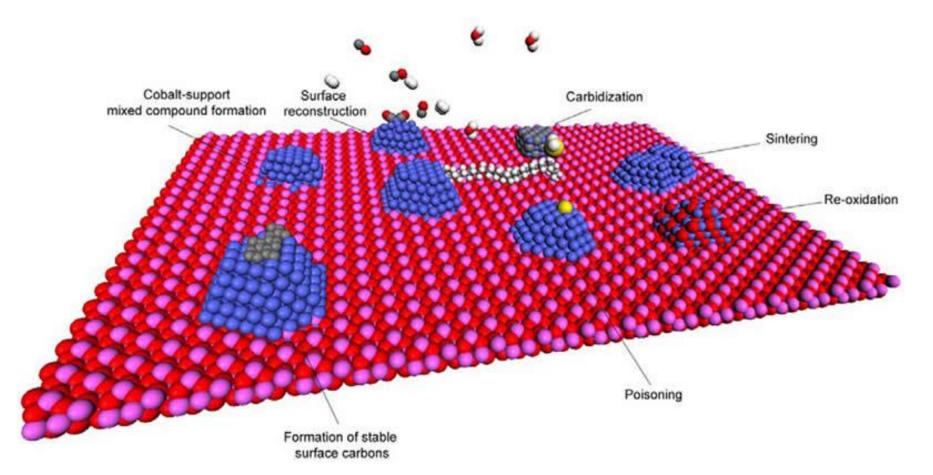

Supported Catalyst 2




May/23

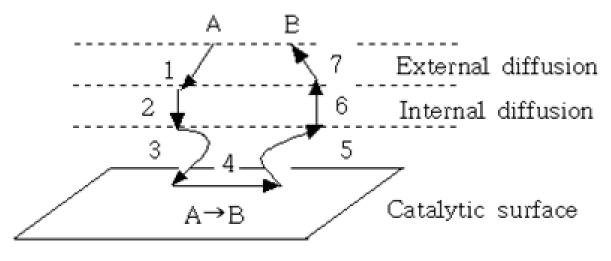

1. Catalysis XI

- Unsupported Catalyst
 - Platinum gauze for ammonia oxidation, the promoted iron for ammonia synthesis, silica-alumina dehydrogenation catalyst


1. Catalysis XII

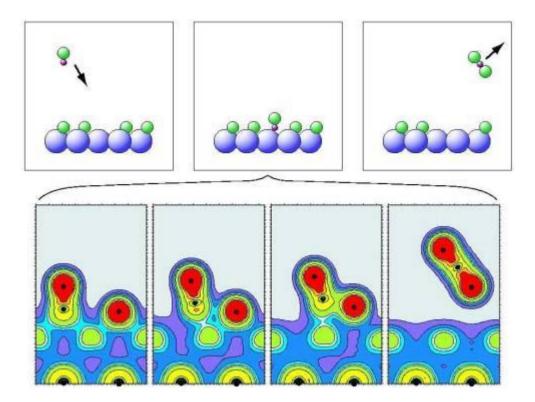
Deactivation

- Aging
- gradual change in surface crystal structure
- Poisoning
- irreversible deposition of substances on the active site
- Fouling (Coking)
- deposit of material on the entire surface
- very fast
- 2~3 minutes for catalytic cracking of nathpha
- reference of the second second
 - automotive exhaust catalyst

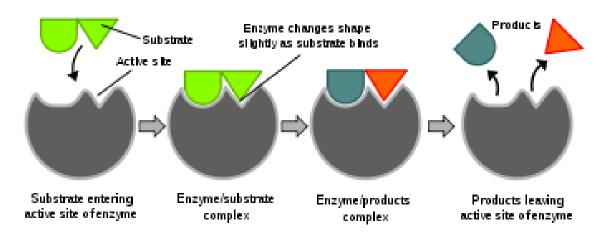

1. Catalysis XIII

o Deactivation 2

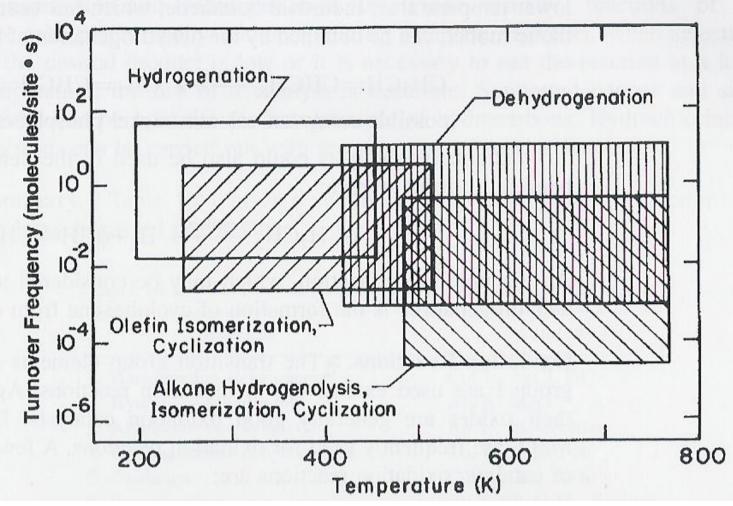
1. Catalysis XIV


- $_{\odot}$ Gas Phase Reaction with Solid Catalyst
 - Adsorption
 - physical adsorption (physisorption)
 4~ 60 kJ/mol, similar to condensation
 - chemical adsorption (chemisorption)
 - 40 ~ 400 kJ/mol, similar to heat of rxn

1. Catalysis XV


o Gas Phase Reaction with Solid Catalyst 2

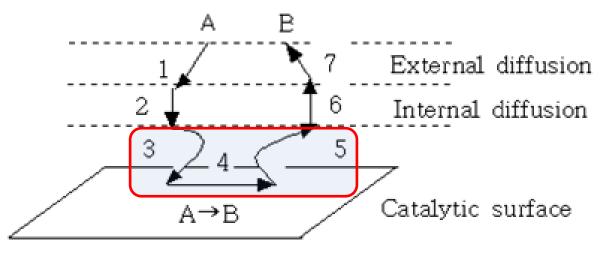
- Adsorbed molecule has rich in electron density enough to be reactive


1. Catalysis XVI

- Active Site
 - H. S. Taylor
 - Reaction is not catalyzed over the entire solid surface but only at certain active site or center
 - surface irregularities, dislocations, edges of crystals, cracks along grain boundaries

1. Catalysis XVII

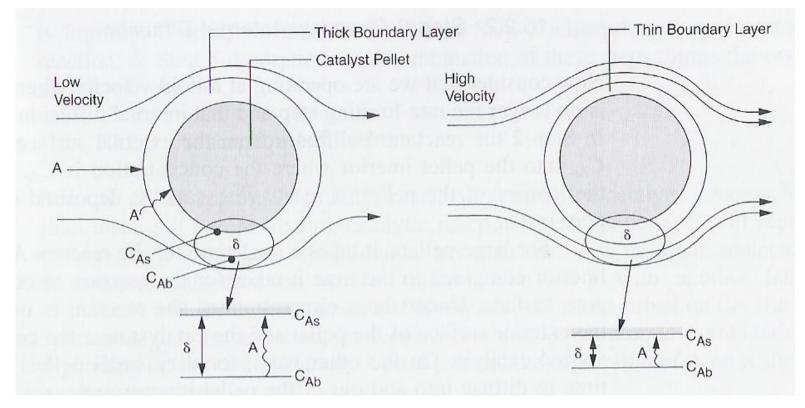
O Classification of Catalyst


1. Catalysis XVIII

$\ensuremath{\circ}$ Classification of Catalyst

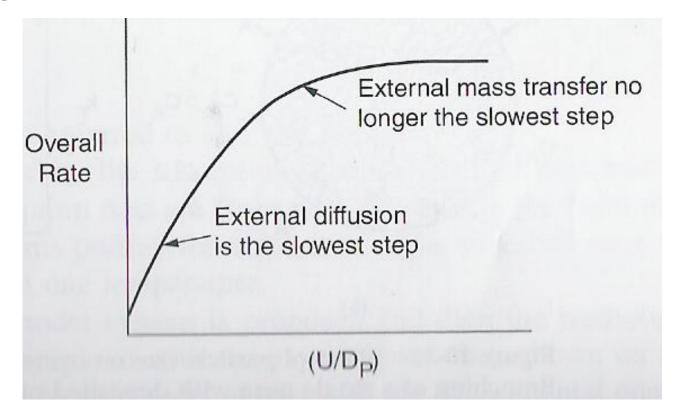
Reaction	Catalysts
1. Halogenation-dehalogenation	CuCl ₂ , AgCl, Pd
2. Hydration-dehydration	Al ₂ O ₃ , MgO
3. Alkylation-dealkylation	AlCl ₃ , Pd, Zeolites
4. Hydrogenation-dehydrogenation	Co, Pt, Cr ₂ O ₃ , Ni
5. Oxidation	Cu, Ag, Ni, V ₂ O ₅
6. Isomerization	AlCl ₃ , Pt/Al ₂ O ₃ , Zeolites

1. Steps in a Catalytic Reaction I

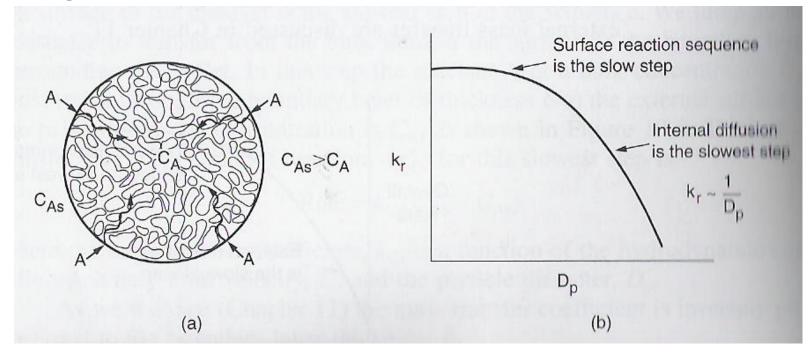

Main Interests

- **3**Adsorption of reactant(s)
- **(4)** Surface reaction
- **⑤Desorption of product(s)**
- Determine the most slow (rate determining) step

1. Steps in a Catalytic Reaction II


• Step 1 Overview: External Diffusion

Rate =
$$k_C (C_{Ab} - C_{As})$$
 where $k_C = \frac{D_{AB}}{\delta}$


1. Steps in a Catalytic Reaction III

• Step 1 Overview : External Diffusion 2

1. Steps in a Catalytic Reaction IV

○ Step 2 Overview: Internal Diffusion

Rate = $k_r C_{As}$

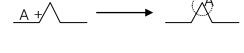
For a large pellet, near the center might not be used when reaction ⇒ Waste!!

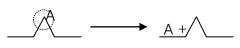
1. Steps in a Catalytic Reaction V

- Step 3 : Adsorption
- Adsorption isotherms

 $A + S \leftrightarrow A \cdot S$

- Total molar concentration of active sites


 $C_t = C_v + C_{A \cdot S} + C_{B \cdot S}$


• adsorption as molecules (on nickel) $CO + S \longleftrightarrow CO \cdot S \iff \text{nondissociated adsorption}$

 • adsorption as atoms (on iron) CO+2S↔C·S+O·S ☜ dissociated adsorption
 ☞ Depends on surface conditions

1. Steps in a Catalytic Reaction VI

- o Step 3 : Adsorption 2
- Adsorption isotherms (Molecule) 1
 - Rate of attachment $= k_A P_{CO} C_v$
 - Rate of detachment $= k_{-A} P_{CO \cdot S}$

- Rate of adsorption

$$r_{\rm AD} = k_{\rm A} P_{\rm CO} C_{\nu} - k_{\rm -A} C_{\rm CO \cdot S}$$

- Adsorption constant

$$K_{\rm A} = k_{\rm A} / k_{\rm -A}$$

$$r_{\rm AD} = k_{\rm A} \left(P_{\rm CO} C_v - \frac{C_{\rm CO\cdot S}}{K_{\rm A}} \right)$$

1. Steps in a Catalytic Reaction VII

- Step 3 : Adsorption 3
- Adsorption isotherms (Molecule) 2
 - CO is the only adsorbed one

$$C_t = C_v + C_{\text{CO}\cdot\text{S}}$$

- At equilibrium

$$C_{\rm CO\cdot S} = K_{\rm A} C_{\rm v} P_{\rm CO}$$

- In terms of attached CO

$$C_{\text{CO}\cdot\text{S}} = K_{\text{A}}C_{v}P_{\text{CO}} = K_{\text{A}}P_{\text{CO}}(C_{t} - C_{\text{CO}\cdot\text{S}})$$

$$C_{\rm CO\cdot S} = \frac{K_{\rm A} P_{\rm CO} C_t}{1 + K_{\rm A} P_{\rm CO}}$$

1. Steps in a Catalytic Reaction VIII

- Step 3 : Adsorption 4
- Adsorption isotherms (Atomic) 1
 - CO is the only adsorbed one
 - $CO+2S \leftrightarrow C \cdot S+O \cdot S$
 - At equilibrium $r_{AD} = k_A P_{CO} C_v^2 k_{-A} C_{O\cdot S} C_{C\cdot S}$
 - In terms of attached CO $r_{\rm AD} = k_{\rm A} \left(P_{\rm CO} C_{\nu}^2 - \frac{C_{\rm O\cdot S} C_{\rm C\cdot S}}{K_{\rm A}} \right)$

$$k_{\rm A} P_{\rm CO} C_v^2 = k_{\rm -A} C_{\rm O \cdot S} C_{\rm C \cdot S}$$

- For $C_{\text{O-S}} = C_{\text{C-S}}$ $C_{\text{O-S}} = C_v \sqrt{K_A P_{\text{CO}}}$

1. Steps in a Catalytic Reaction IX

- Step 3 : Adsorption 5
- Adsorption isotherms (Atomic) 2
 - Substitute for $C_{0.5}$ and $C_{C.5}$ in the site balance eq'n

$$C_{t} = C_{v} + C_{OS} + C_{CS}$$

= $C_{v} + C_{v} \left(K_{CO} P_{CO} \right)^{1/2} + C_{v} \left(K_{CO} P_{CO} \right)^{1/2}$
= $C_{v} \left(1 + 2 \left(K_{CO} P_{CO} \right)^{1/2} \right)$

- Solving for $\mathbf{C}_{\mathbf{v}}$

$$C_v = C_t / (1 + 2(K_{\rm CO}P_{\rm CO})^{1/2})$$

- In terms of attached O

 $C_{\text{O-S}} = \frac{\left(K_{\text{A}} P_{\text{CO}}\right)^{1/2} C_{t}}{1 + 2\left(K_{\text{A}} P_{\text{CO}}\right)^{1/2}}$

1. Steps in a Catalytic Reaction XI

- Step 4 : Surface Reaction 1
- \odot Rate of adsorption of species A onto a solid surface

$$A + S \leftrightarrow A \cdot S$$
$$r_{AD} = k_A \left(P_{CO} C_v - \frac{C_{CO \cdot S}}{K_A} \right)$$

○ Single site