
6. Multiple Reactions

o Selectivity and Yield  

o Reactions in Series 

- To give maximum selectivity 

o Algorithm for Multiple Reactions  

o Applications of Algorithm 

o Multiple Reactions-Gas Phase



0. Types of Multiple Rxns I
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o Parallel Reactions

- Oxidation of ethylene

o Series Reactions 

- Reaction of EO with ammonia
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0. Types of Multiple Rxns II
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o Complex Reactions: Series and Parallel aspects 

combined

- Formation butadiene from ethanol

o Independent Reactions

- Cracking crude oil
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1. Selectivity and Yield I
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o Two types of selectivity

Instantaneous Overall
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1. Selectivity and Yield II
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o Self Test 1

- 3 species were found in a CSTR, CA0 = 2moles/dm3

Run T (oC) CA (mole/dm3) 
CB

(mole/dm3) 
CC (mole/dm3) 

1 30 1.7 0.01 0.29 

2 50 1.4 0.03 0.57 

3 70 1.0 0.1 0.90 

4 100 0.5 1.25 1.25 

5 120 0.1 1.80 0.1 

6 130 0.01 1.98 0.01 



1. Selectivity and Yield III

Apr/18 2011 Spring 7

o Self Test 2

- At low temperatures 

1) Little conversion of A 

2) Little B formed 

3) Mostly C formed (but not too 

much because of the low 

conversion - 15 to 30% - of A) 

- At high temperatures 

1) Virtually complete conversion 

of A 

2) Mostly B formed



1. Selectivity and Yield IV
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o Self Test 3

- Data suggest 2 reactions 

- Reaction (1) is dominant at high temperatures 

with k1 » k2, A1 » A2

- Reaction (2) is dominant at low temperatures 

k2 » k1, E2 > E1



1. Selectivity and Yield V
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o Self Test 4



2. Parallel Reactions I
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o The net rate of disappearance of A

o Instantaneous selectivity

- If α > β use high concentration of A. Use PFR.

- If α < β use low concentration of A. Use CSTR.
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※ Reactor Selection I
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o Criteria

- Selectivity

- Yield

- Temperature control

- Safety

- Cost



※ Reactor Selection II
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o Application of Batch

- High A with low B (d)

- High B with low A (e)



※ Reactor Selection III
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o Application of PFR (Membrane)

- High A with low B (f)

- High B with low A (g)



※ Reactor Selection IV
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o Low A & B with temp. control



※ Reactor Selection V
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o Reversible reaction

- Shift equilibrium by removing C



2. Parallel Reactions II
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o Maximizing the Selectivity - Parallel Reactions 1

- Determine the instantaneous selectivity, SD/U, for the 

liquid phase reactions:

Sketch the selectivity as a function of the concentration 

of A. Is there an optimum and if so what is it? 



2. Parallel Reactions III
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o Maximizing the Selectivity - Parallel Reactions 2

Use CSTR with exit concentration C*
A



3. Series Reactions (p. 283)
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o Example: Series reaction in a batch reactor 1

- This series reaction could also be written as 

• Reaction (1)                      : -r1A=k1CA

• Reaction (2)                      : -r2B=k2CB

- Mole balance on every species

• Species A



3. Series Reactions II
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o Example: Series reaction in a batch reactor 2

- Net rate of reaction of A, rA=r1A+0 

- Rate law,                             r1A=-k1ACA

- Relative rates,                    r1B=-r1A

- Integrating with CA= CA0 at t = 0 and then rearranging



3. Series Reactions III
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o Example: Series reaction in a batch reactor 3

- Net species B:

• Net rate of reaction of B

• Rate law, r2B=-k2CB

• Relative rates

• Combine

☜ 1st order ODE



3. Series Reactions IV
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o Example: Series reaction in a batch reactor 4

- Using the integrating factor, i.f.: (p 1012, A 3)

• Evaluate

•at t = 0, CB = 0



3. Series Reactions V
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o Example: Series reaction in a batch reactor 5

- Optimization of the desired product B

- Species C, CC = CA0 - CB - CA



3. Series Reactions VI
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o Self Test 1

- Concentration-time trajectories

- Which of the following reaction pathways best 

describes the data:



3. Series Reactions VII
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o Self Test 2

- Concentration-time trajectories

- Sketch the concentration-time trajectory for the 

reaction



4. Algorithm for Complex Reactions I
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4. Algorithm for Complex Reactions II
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4. Algorithm for Complex Reactions III
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o Mole Balances (p 327)

Reactor Type Gas Phase Liquid Phase

Batch

Semibatch

CSTR

PFR

PBR



4. Algorithm for Complex Reactions IV
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o Rates 1

- Number every reaction

- Rate laws for every reaction

- Relative rates for each reaction

for a given reaction i



4. Algorithm for Complex Reactions V
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o Rates 2

- Relative rates for each reaction 2



4. Algorithm for Complex Reactions VI
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o Rates 3

- Net rate of formation for species A that appears in N 

reactions 



4. Algorithm for Complex Reactions VII
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o Stoichiometry

- Net rate of formation for species A that appears in N 

reactions 

- NOTE: We could use the gas phase mole balance for 

liquids and then just express the concentration as 

Flow CA = FA/v0

Batch CA = NA/V0



4. Algorithm for Complex Reactions VIII
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o Self Test

- Writing net rates of formation

• The reactions are elementary. Write the net rates of 

formation for A, B, C and D

Sol) A



4. Algorithm for Complex Reactions IX
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o Self Test 2

B 



4. Algorithm for Complex Reactions X

Apr/18 2011 Spring 34

o Self Test 3

C 



4. Algorithm for Complex Reactions XI
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o Self Test 4

D 

- These net rates of reaction are now coupled with the 

appropriate mole balance of A, B, C, and D and 

solved using a numerical software package.

• For example for a PFR:



5. Applications of Algorithm I
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(1) 

NOTE: The specific 

reaction rate k1A is

defined wrt species 

A. 

(2) 

NOTE: The specific 

reaction rate k2C is

defined wrt species 

C. 



5. Applications of Algorithm II
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o Example A: Liquid phase PFR 1

- The complex liquid phase reactions follow 

elementary rate laws

(1) A + 2B → C      -r1A = k1ACACB
2

(2) 2A + 3C → D        -r2C = k2CCA
2CB

3

- Equal molar in A and B with FA0 = 200 mol/min and 

the volumetric flow rate is 100 dm3/min. The reaction 

volume is 50 dm3 and the rate constants are

- Plot FA, FB, FC, FD and SC/D as a function of V 



5. Applications of Algorithm III
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o Example A: Liquid phase PFR 2

- Solution

• Mole balances



5. Applications of Algorithm IV
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o Example A: Liquid phase PFR 3

- Solution

• Net rates

• Rate laws



5. Applications of Algorithm V
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o Example A: Liquid phase PFR 4

- Solution

• Relative rates



5. Applications of Algorithm VI
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o Example A: Liquid phase PFR 5

- Solution

• Selectivity

• If one were to write SC/D = FC/FD in the Matlab

program, Matlab would not execute because at V = 0 

FC = 0 resulting in an undefined volume (infinity) at 

V = 0. To get around this problem we start the 

calculation 10-4 dm3 from the reactor entrance where 

FD will note be zero and use the following IF 

statement.



5. Applications of Algorithm VII
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o Example A: Liquid phase PFR 6

- Solution

• Stoichiometry Parameters



5. Applications of Algorithm VIII
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o Example A: Liquid phase PFR 7

- Solution



5. Applications of Algorithm IX
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o Example B: Liquid phase CSTR 1

- Same rxns, rate laws, and rate constants as example A

A + 2B → C  (1)  -r1A = k1ACACB
2 NOTE: The specific

reaction rate k1A is
defined wrt species A

3C + 2A → D (2) –r2C = k2CCC
3CA

2 NOTE: The specific 
reaction rate k2C is
defined wrt species C

- Liquid phase reactions take place in a 2,500 dm3 CSTR.

• equal molar in A and B with FA0 = 200 mol/min, 

• v0 = 100 dm3/min, V0 = 50 dm3. 

- Find the concentrations of A, B, C, and D exiting the 
reactor along with the exiting selectivity.

- Plot FA, FB, FC, FD and SC/D as a function of V



5. Applications of Algorithm X
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o Example B: Liquid phase CSTR 2 – Solution

- Liquid CSTR

• Mole balances

• Net rates



5. Applications of Algorithm XI
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o Example B: Liquid phase CSTR 2 – Solution 2

• Rate laws

• Net rates



5. Applications of Algorithm XII
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o Example B: Liquid phase CSTR 2 – Solution 3

• Selectivity

• Parameters



5. Applications of Algorithm XIII
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o Example C: Gas phase PFR, no pressure drop

- Same rxns, rate laws, and rate constants as example A

A + 2B → C  (1)  -r1A = k1ACACB
2 NOTE: The specific

reaction rate k1A is

defined wrt species A

3C + 2A → D (2) –r2C = k2CCC
3CA

2 NOTE: The specific 

reaction rate k2C is

defined wrt species C

- The complex gas phase reactions take place in a PFR. 

• feed is equal molar in A and B with FA0 = 10 mol/min

• volumetric flow rate is 100 dm3/min. 

• reactor volume 1,000 dm3, no pressure drop

• total entering concentration is CT0 = 0.2 mol/dm3



5. Applications of Algorithm XIV
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o Example C: Gas phase PFR, no pressure drop 2

- The complex gas phase reactions take place in a 

PFR. 

• rate constants 

• Plot FA, FB, FC, FD and S~
C/D as a function of V



5. Applications of Algorithm XV
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o Example C: Gas phase PFR, no pressure drop 3

Sol)

- Gas phase PFR, no pressure drop 

• Mole balances



5. Applications of Algorithm XVI
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o Example C: Gas phase PFR, no pressure drop 4

Sol)

- Gas phase PFR, no pressure drop 2

• Net rates

• Rate law



5. Applications of Algorithm XVII
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o Example C: Gas phase PFR, no pressure drop 5

Sol)

- Gas phase PFR, no pressure drop 3

• Relative rates



5. Applications of Algorithm XVIII
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o Example C: Gas phase PFR, no pressure drop 6

Sol) - Gas phase PFR, no pressure drop 4

• Selectivity

• Stoichiometry



5. Applications of Algorithm XIX
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o Example C: Gas phase PFR, no pressure drop 7

Sol) - Gas phase PFR, no pressure drop 5

• Parameters



5. Applications of Algorithm XX
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o Example C: Gas phase PFR, no pressure drop 8

Sol) - Gas phase PFR, no pressure drop 5


