6. Multiple Reactions

- **o** Selectivity and Yield
- Reactions in Series
 - To give maximum selectivity
- **o** Algorithm for Multiple Reactions
- Applications of Algorithm
- Multiple Reactions-Gas Phase

0. Types of Multiple Rxns I

0. Types of Multiple Rxns II

• Complex Reactions: Series and Parallel aspects combined $A \xrightarrow{k_1} 2B + C$

 $A + 2C \xrightarrow{k_2} 3D$

- Formation butadiene from ethanol $C_2H_5OH \longrightarrow C_2H_4+H_2O$

 $C_2H_5OH \longrightarrow CH_3CHO+H_2$

 $\mathrm{C_2H_4}{+}\mathrm{CH_3CHO} \longrightarrow \mathrm{C_4H_6}{+}\mathrm{H_2O}$

 \circ Independent Reactions $A \xrightarrow{k_1} B$

$$C \xrightarrow{k_2} D$$

- Cracking crude oil

$$C_{15} H_{32} \longrightarrow C_{12}C_{26} + C_3 H_6$$
$$C_8 H_{18} \longrightarrow C_6 H_{14} + C_2 H_4$$

1. Selectivity and Yield I

${\rm \circ}$ Two types of selectivity

	Instantaneous	Overall
Selectivity	$S_{\rm DU} = \frac{r_{\rm D}}{r_{\rm U}}$	$\widetilde{S}_{\rm DU} = \frac{F_{\rm D}}{F_{\rm U}}$
Yield	$Y_{\rm D} = \frac{r_{\rm D}}{-r_{\rm A}}$	$\widetilde{Y}_{\rm D} = \frac{F_{\rm D}}{F_{\rm A0} - F_{\rm A}}$
Example	A+B $\xrightarrow{k_1}$ D, desired product, $r_D = k_1 C_A^2 C_B$ A+B $\xrightarrow{k_2}$ U, undesired product, $r_U = k_2 C_A C_B$ $S_{DU} = \frac{r_D}{r_U} = \frac{k_1 C_A^2 C_B}{k_2 C_A C_B} = \frac{k_1}{k_2} C_A$	

1. Selectivity and Yield II

• Self Test 1

- 3 species were found in a CSTR, $C_{A0} = 2moles/dm^3$

Run	T (°C)	C _A (mole/dm ³)	C _B (mole/dm ³)	C _c (mole/dm ³)
1	30	1.7	0.01	0.29
2	50	1.4	0.03	0.57
3	70	1.0	0.1	0.90
4	100	0.5	1.25	1.25
5	120	0.1	1.80	0.1
6	130	0.01	1.98	0.01

1. Selectivity and Yield III

- o Self Test 2
 - At low temperatures
 - 1) Little conversion of A
 - 2) Little B formed
 - 3) Mostly C formed (but not too much because of the low conversion - 15 to 30% - of A)
 - At high temperatures
 - 1) Virtually complete conversion of A
 - 2) Mostly B formed

1. Selectivity and Yield IV

- Self Test 3
 - Data suggest 2 reactions
 - (1) $A \xrightarrow{k_1} B = r_{1A} = k_1 C_A = C_A A_1 e^{-E_1/RT} = r_B$

(2)
$$A \xrightarrow{k_2} C$$
 $-r_{2A} = k_2 C_A = C_A A_2 e^{-E_2/RT} = r_C$

- Reaction (1) is dominant at high temperatures $k_1 = A_1 e^{-E_1/RT}$ with $k_1 \gg k_2$, $A_1 \gg A_2$
- Reaction (2) is dominant at low temperatures $k_2 \gg k_1, E_2 > E_1$ $-r_A = (k_1 + k_2)C_A = (A_1e^{-E_1/RT} + A_2e^{-E_2/RT})C_A$

1. Selectivity and Yield V

\circ Self Test 4

2. Parallel Reactions I

$$A \xrightarrow{k_1} D(\text{Desired}), \quad r_D = k_1 C_A^{\alpha}$$
$$A \xrightarrow{k_2} U(\text{Undesired}), \quad r_U = k_2 C_A^{\beta}$$

 \odot The net rate of disappearance of A

 $r_{\rm A} = r_{\rm D} + r_{\rm U}$

○ Instantaneous selectivity

$$S_{\rm D/U} = \frac{r_{\rm D}}{r_{\rm U}} = \frac{k_{\rm 1} C_{\rm A}^{\alpha}}{k_{\rm 2} C_{\rm A}^{\beta}} = \frac{k_{\rm 1}}{k_{\rm 2}} C_{\rm A}^{(\alpha-\beta)}$$

- If $\alpha > \beta$ use high concentration of A. Use PFR.

- If $\alpha < \beta$ use low concentration of A. Use CSTR.

※ Reactor Selection I

- o Criteria
 - Selectivity
 - Yield
 - Temperature control
 - Safety
 - Cost

(b) Tubular reactor

A B

*** Reactor Selection II**

- **O** Application of Batch
 - High A with low B (d)
 - High B with low A (e)

*** Reactor Selection III**

- Application of PFR (Membrane)
 - High A with low B (f)
 - High B with low A (g)

(f) A membrane reactor or a tubular reactor with side streams

 (g) A membrane reactor or a tubular reactor with side streams

※ Reactor Selection IV

o Low A & B with temp. control

※ Reactor Selection V

Reversible reaction

- Shift equilibrium by removing C

2. Parallel Reactions II

- Maximizing the Selectivity Parallel Reactions 1
 - Determine the instantaneous selectivity, S_{D/U}, for the liquid phase reactions:

 $A + B \longrightarrow D \qquad r_{D} = k_{1}C_{A}^{2}C_{B}$ $A + B \longrightarrow U_{1} \qquad r_{U_{1}} = k_{2}C_{A}C_{B}$ $A + B \longrightarrow U_{2} \qquad r_{U_{2}} = k_{3}C_{A}^{3}C_{B}$ $S_{D/U_{1}U_{2}} = \frac{r_{D}}{r_{U_{1}} + r_{U_{2}}} = \frac{k_{1}C_{A}^{2}C_{B}}{k_{2}C_{A}C_{B} + k_{3}C_{A}^{3}C_{B}} = \frac{k_{1}C_{A}}{k_{2} + k_{3}C_{A}^{2}}$

Sketch the selectivity as a function of the concentration of A. Is there an optimum and if so what is it?

2. Parallel Reactions III

 $_{\odot}$ Maximizing the Selectivity - Parallel Reactions 2

$$S_{D/U_{1}U_{2}} = \frac{r_{D}}{r_{U_{1}} + r_{U_{2}}} = \frac{k_{1}C_{A}^{2}C_{B}}{k_{2}C_{A}C_{B} + k_{3}C_{A}^{3}C_{B}} = \frac{k_{1}C_{A}}{k_{2} + k_{3}C_{A}^{2}}$$
$$\frac{dS}{dC_{A}} = 0 = k_{1}\left[k_{2} + k_{3}C_{A}^{*2}\right] - k_{1}C_{A}^{*}\left[2k_{3}C_{A}^{*}\right]S_{D/U_{1}U_{2}}$$
$$C_{A}^{*} = \sqrt{\frac{k_{2}}{k_{3}}}$$

Use CSTR with exit concentration C^{*}_A

3. Series Reactions (p. 283)

• Example: Series reaction in a batch reactor 1

- This series reaction could also be written as
- Reaction (1) $A \xrightarrow{k_1} B$: -r_{1A}=k₁C_A
- Reaction (2) $\exists \xrightarrow{k_2} \exists -r_{2B} = k_2 C_B$
- Mole balance on every species
- Species A Batch Reactor $V = V_0$

$$\frac{1}{V_0} \frac{dN_A}{dt} = r_A$$

3. Series Reactions II

- $_{\odot}$ Example: Series reaction in a batch reactor 2
 - Net rate of reaction of A, $r_A = r_{1A} + 0$
 - Rate law, $r_{1A} = -k_{1A}C_A$
 - Relative rates,

$$\frac{dC_A}{dt} = -k_{1A}C_A$$

- Integrating with $C_A = C_{A0}$ at t = 0 and then rearranging

r_{1B}=-**r**_{1A}

 $C_A = C_{A0} exp(-k_1 t)$

3. Series Reactions III

- $_{\odot}$ Example: Series reaction in a batch reactor 3
 - Net species B: $\frac{dC_B}{dt} = r_B$
 - Net rate of reaction of B $r_B = r_{BNET} = r_{1B} + r_{2B}$
 - Rate law, r_{2B}=-k₂C_B
 - **Relative rates** $r_B = k_1 C_A k_2 C_B$

$$\frac{dC_B}{dt} = k_1 C_{AO} \exp(-k_1 t) - k_2 C_B$$

• Combine

$$\frac{dC_B}{dt} + k_2C_B = k_1C_{A0} \exp(-k_1t)$$

$$\approx 1^{st} \text{ order ODE}$$

3. Series Reactions IV

- Example: Series reaction in a batch reactor 4
 - Using the integrating factor, i.f.: (p 1012, A 3) i.f. = $exp \int k_2 dt = exp(k_2t)$

• Evaluate
$$\frac{d[C_{B} \exp(k_{2}t)]}{dt} = k_{1}C_{A0} \exp(k_{2} - k_{1})t$$

•at t = 0, C_B = 0
$$C_{B} = \frac{k_{1}C_{A0}}{k_{2} - k_{1}} [\exp(-k_{1}t) - \exp(-k_{2}t)]$$

3. Series Reactions V

- Example: Series reaction in a batch reactor 5
 - Optimization of the desired product B

- Species C, $C_C = C_{A0} - C_B - C_A$

$$C_{C} = \frac{C_{A0}}{k_{2} - k_{1}} \left[k_{2} \left(1 - e^{-k_{1}t} \right) - k_{1} \left(1 - e^{-k_{2}t} \right) \right]$$

3. Series Reactions VI

- Self Test 1
 - Concentration-time trajectories
 - Which of the following reaction pathways best describes the data:

3. Series Reactions VII

- Self Test 2
 - Concentration-time trajectories
 - Sketch the concentration-time trajectory for the reaction

1)
$$A + B \longrightarrow C$$

2) $B + C \longrightarrow D$

$$C_{A0} = 4 mol/dm^3$$

$$C_{B0} = 6 \text{ mol/dm}^3$$

 $C_{CD} = C_{D0} = 0$

4. Algorithm for Complex Reactions I

4. Algorithm for Complex Reactions II

4. Algorithm for Complex Reactions III

• Mole Balances (p 327)

Reactor Type	<u>Gas Phase</u>	Liquid Phase
Batch	$\frac{dN_A}{dt} = r_A \vee$	$\frac{dC_A}{dt} = r_A$
Semibatch	$\frac{dN_A}{dt} = r_A \vee$	$\frac{dC_A}{dt} = r_A - \frac{v_0 C_A}{V}$
	$\frac{dN_{B}}{dt} = r_{B} \vee + F_{BO}$	$\frac{dC_B}{dt} = r_B + \frac{\upsilon_0 [C_{B0} - C_B]}{V}$
CSTR	$V = \frac{F_{A0} - F_{A}}{-r_{A}}$	$V = v_0 \frac{\left[C_{A0} - C_A\right]}{-r_A}$
PFR	$v_0 \frac{dC_A}{dV} = r_A$	$\frac{dF_A}{dV} = r_A$
PBR	$v_0 \frac{dC_A}{dW} = r'_A$	$\frac{dF_A}{dW} = r'_A$

4. Algorithm for Complex Reactions IV

o Rates 1

- Number every reaction (1) $2A \rightarrow B$

(2) $A + 3B \rightarrow 2C$

- Rate laws for every reaction

(1)
$$r_{1A} = -k_{1A}C_A^2$$

(2) $r_{2A} = -k_{2A}C_AC_B$ (non elementary)

- Relative rates for each reaction for a given reaction *i*

(i)
$$a_i A + b_i B \rightarrow c_i C + d_i D$$

4. Algorithm for Complex Reactions V

o Rates 2

- Relative rates for each reaction 2

$$\frac{\mathbf{r}_{iA}}{\mathbf{-a}_{i}} = \frac{\mathbf{r}_{iB}}{\mathbf{-b}_{i}} = \frac{\mathbf{r}_{iC}}{\mathbf{c}_{i}} = \frac{\mathbf{r}_{iD}}{\mathbf{d}_{i}} \qquad RXN \ 1: \frac{\mathbf{r}_{1A}}{-2} = \frac{\mathbf{r}_{1B}}{1} \qquad \mathbf{r}_{1B} = \frac{-\mathbf{r}_{1A}}{2} = \frac{\mathbf{k}_{1A}}{2} C_{A}^{2}$$
$$RXN \ 2: \frac{\mathbf{r}_{2A}}{-1} = \frac{\mathbf{r}_{2B}}{-3} = \frac{\mathbf{r}_{2C}}{2}$$
$$\mathbf{r}_{2B} = 3\mathbf{r}_{2A}$$
$$\mathbf{r}_{2C} = -2\mathbf{r}_{2A}$$

4. Algorithm for Complex Reactions VI

o Rates 3

- Net rate of formation for species A that appears in N reactions

$$r_{A} = \sum_{i=1}^{N} r_{iA} \qquad r_{A} = r_{1A} + r_{2A} = -k_{1A}C_{A}^{2} - k_{2A}C_{A}C_{B}$$

$$r_{B} = r_{1B} + r_{2B} = \frac{1}{2}k_{1A}C_{A} - 3k_{2A}C_{A}C_{B}$$

$$r_{C} = r_{1C} + r_{2C} = 0 + 2k_{2A}C_{A}C_{B}$$

4. Algorithm for Complex Reactions VII

o Stoichiometry

- Net rate of formation for species A that appears in N reactions
- NOTE: We could use the gas phase mole balance for liquids and then just express the concentration as Flow $C_A = F_A/v_0$ Batch $C_A = N_A/V_0$

$$\begin{split} c_i &= c_{T0} \frac{F_i}{F_T} \frac{T_{0y}}{T} \\ F_T &= \sum F_i = F_A + F_B + \dots \end{split}$$

4. Algorithm for Complex Reactions VIII

- Self Test
 - Writing net rates of formation
 - The reactions are elementary. Write the net rates of formation for A, B, C and D

(1)
$$A + 2B \rightarrow 2C$$
 $k_{1A} = 0.1 (dm^{3}/mol))/min$

(2)
$$2C + \frac{1}{2}B \rightarrow 3D$$
 $k_{2D} = 2(dm^{3}/mol^{3/2}/min)$

Sol) A
$$r_A = r_{1A} + r_{2A} = r_{1A} + 0$$

 $r_{1A} = -k_{1A}C_AC_B^2$
 $r_A = -k_{1A}C_AC_B^2$

Apr/18

33

4. Algorithm for Complex Reactions IX

\circ Self Test 2

B	$r_{\rm B} = r_{1\rm B} + r_{2\rm B}$	8
	$\frac{\mathbf{r}_{1\mathrm{B}}}{-2} = \frac{\mathbf{r}_{1\mathrm{A}}}{-1}$	
	$r_{1B} = 2r_{1A} = -2k_{1A}C_AC_B^2$	
	$\frac{r_{2B}}{-1/2} = \frac{r_{2D}}{3}$	$r_{2B} = -\frac{1}{6}k_{2D}C_B^{1/2}C_C^2$
	$r_{2B} = -\frac{1}{6}r_{2D}$	$\mathbf{r}_{\rm B} = -2\mathbf{k}_{1\rm A}C_{\rm A}C_{\rm B}^2 - \frac{1}{2}C_{\rm B}^{1/2}C_{\rm C}^2$
	$r_{2D} = k_{2D} C_B^{1/2} C_C^2$	

4. Algorithm for Complex Reactions X

○ Self Test 3

C
$$r_{C} = r_{1C} + r_{2C}$$

 $\frac{r_{1C}}{2} = \frac{r_{1A}}{-1}$
 $r_{1C} = 2k_{1A}C_{A}C_{B}^{2}$
 $\frac{r_{2C}}{-2} = \frac{r_{2D}}{3}$
 $r_{2C} = -\frac{2}{3}k_{2D}C_{C}^{2}C_{B}^{1/2}$

4. Algorithm for Complex Reactions XI

○ Self Test 4

D $r_D = r_{1D} + r_{2D} = r_{2D}$

- These net rates of reaction are now coupled with the appropriate mole balance of A, B, C, and D and solved using a numerical software package.
 - For example for a PFR:

$$\begin{split} \frac{\mathrm{d} F_{A}}{\mathrm{d} V} &= -k_{1A} \mathrm{C}_{A} \mathrm{C}_{B}^{2} \\ \frac{\mathrm{d} F_{B}}{\mathrm{d} V} &= -2k_{1A} \mathrm{C}_{A} \mathrm{C}_{B}^{2} - \frac{1}{6} \mathrm{C}_{B}^{1/2} \mathrm{C}_{C}^{2} \end{split}$$

5. Applications of Algorithm I

$$A + 2B \rightarrow C \quad (1) \quad -r_{1A} = k_{1A}C_A C_B^2$$
$$3C + 2A \rightarrow D \quad (2) \quad -r_{2C} = k_{2C}C_C^3 C_A^2$$

NOTE: The specific reaction rate k_{1A} is defined wrt species A.

NOTE: The specific reaction rate k_{2C} is defined wrt species C.

5. Applications of Algorithm II

- Example A: Liquid phase PFR 1
 - The complex liquid phase reactions follow elementary rate laws
 - (1) A + 2B \rightarrow C $-r_{1A} = k_{1A}C_AC_B^2$ (2) 2A + 3C \rightarrow D $-r_{2C} = k_{2C}C_A^2C_B^3$
 - Equal molar in A and B with $F_{A0} = 200$ mol/min and the volumetric flow rate is 100 dm³/min. The reaction volume is 50 dm³ and the rate constants are

$$k_{1A} = 10 \left(\frac{dm^3}{mol}\right)^2 / min \qquad k_{2C} = 15 \left(\frac{dm^3}{mol}\right)^4 / min$$

- Plot $F_A,\,F_B,\,F_C,\,F_D$ and $S_{C/D}$ as a function of V

5. Applications of Algorithm III

- Example A: Liquid phase PFR 2
 - Solution
 - Mole balances

(1)
$$\frac{dF_{A}}{dV} = r_{A} \qquad (F_{A0} = 200 \text{ mol/min})$$

(2)
$$\frac{dF_{B}}{dV} = r_{B} \qquad (F_{B0} = 200 \text{ mol/min})$$

(3)
$$\frac{dF_{C}}{dV} = r_{C} \qquad V_{F} = 50 \text{ dm}^{3}$$

(4)
$$\frac{dF_{D}}{dV} = r_{D}$$

5. Applications of Algorithm IV

- Example A: Liquid phase PFR 3
 - Solution
 - Net rates

(5)	$\mathbf{r}_{A} = \mathbf{r}_{1A} + \mathbf{r}_{2A}$
(6)	$r^{}_{\rm B}=r^{}_{1\rm B}$
(7)	$r_{\rm C}=r_{\rm 1C}+r_{\rm 2C}$
(8)	$r_{\rm D} = r_{\rm 2D}$

Rate laws

(9) $r_{1A} = -k_{1A}C_AC_B^2$

(10) $r_{2C} = -k_{2C}C_A^2C_C^3$

5. Applications of Algorithm V

- Example A: Liquid phase PFR 4
 - Solution
 - Relative rates

	$\frac{r_{1A}}{-1} = \frac{r_{1B}}{-2} = \frac{r_{1C}}{1}$	Reaction 1
(11)	$r_{1B} = 2 r_{1A}$	
(12)	$r_{\rm 1C}=-r_{\rm 1A}$	
	$\frac{r_{2A}}{-2} = \frac{r_{2C}}{-3} = \frac{r_{2D}}{1}$	Reaction 2
(13)	$r_{2A} = \frac{2}{3} r_{2C}$	
(14)	$r_{2D} = -\frac{1}{3}r_{2C}$	

5. Applications of Algorithm VI

- Example A: Liquid phase PFR 5
 - Solution
 - Selectivity
 - If one were to write $S_{C/D} = F_C/F_D$ in the Matlab program, Matlab would not execute because at V = 0 $F_C = 0$ resulting in an undefined volume (infinity) at V = 0. To get around this problem we start the calculation 10⁻⁴ dm³ from the reactor entrance where F_D will note be zero and use the following IF statement.

(15)
$$\tilde{S}_{C/D} = if(V > 0.001) then\left(\frac{F_C}{F_D}\right) else(0)$$

5. Applications of Algorithm VII

- **Example A: Liquid phase PFR 6** Ο
 - Solution
 - Stoichiometry

Parameters

- (16) $C_{A} = F_{A} / \upsilon_{0}$ $v_0 = 100 \text{ dm}^3/\text{min}$ (20)(17) $C_{B} = F_{B} / v_{0}$ (21)(18) $C_{\rm C} = F_{\rm C} / v_0$
- (19) $C_{\rm D} = F_{\rm D}/\upsilon_0$

$$k_{1A} = 10 \left(\frac{dm^3}{mol} \right)^2 / \frac{min}{mol}$$
$$k_{2C} = 15 \left(\frac{dm^3}{mol} \right)^4 / \frac{min}{mol}$$

(22)

5. Applications of Algorithm VIII

- Example A: Liquid phase PFR 7
 - Solution

5. Applications of Algorithm IX

- Example B: Liquid phase CSTR 1
 - Same rxns, rate laws, and rate constants as example A
 - $\begin{array}{lll} \textbf{A+2B} \rightarrow \textbf{C} \hspace{0.2cm} \textbf{(1)} \hspace{0.2cm} \textbf{-r}_{1A} = k_{1A} \textbf{C}_{A} \textbf{C}_{B}^{\hspace{0.2cm} 2} \hspace{0.2cm} \textbf{NOTE: The specific} \\ \hspace{0.2cm} reaction \hspace{0.2cm} rate \hspace{0.2cm} k_{1A} \hspace{0.2cm} is \\ \hspace{0.2cm} defined \hspace{0.2cm} wrt \hspace{0.2cm} species \hspace{0.2cm} \textbf{A} \end{array}$

$$\label{eq:scalar} \begin{array}{l} 3C+2A \rightarrow D \ (2) \ -r_{2C} = k_{2C} C_C{}^3 C_A{}^2 & \mbox{NOTE: The specific reaction rate k_{2C} is defined wrt species C} \end{array}$$

- Liquid phase reactions take place in a 2,500 dm³ CSTR.
- equal molar in A and B with $F_{A0} = 200$ mol/min,
- $v_0 = 100 \text{ dm}^3/\text{min}$, $V_0 = 50 \text{ dm}^3$.
- Find the concentrations of A, B, C, and D exiting the reactor along with the exiting selectivity.
- Plot $F_{A},\,F_{B},\,F_{C},\,F_{D}$ and $S_{C/D}$ as a function of V

5. Applications of Algorithm X

- Example B: Liquid phase CSTR 2 Solution
 - Liquid CSTR
 - Mole balances (1) $f(C_A) = \upsilon_0 C_{A0} \upsilon_0 C_A + r_A V$
 - (2) $f(C_B) = \upsilon_0 C_{B0} \upsilon_0 C_B + r_B V$
 - (3) $f(C_C) = -\upsilon_0 C_C + r_C V$
 - $(4) \qquad f(C_D) = -\upsilon_0 C_D + r_D V$

 $\mathbf{r}_{\mathrm{D}} = \mathbf{r}_{\mathrm{DD}}$

Net rates

(5) $r_{A} = r_{1A} + r_{2A}$ (6) $r_{B} = r_{1B}$ (7) $r_{C} = r_{1C} + r_{2C}$

2011 Spring

(8)

5. Applications of Algorithm XI

• Example B: Liquid phase CSTR 2 – Solution 2

• Rate laws (9)
$$r_{1A} = -k_{1A}C_AC_B^2$$

• Net rates (10) $r_{2C} = -k_{2C}C_A^2C_C^2$
 $\frac{r_{1A}}{-1} = \frac{r_{1B}}{-2} = \frac{r_{1C}}{1}$ Reaction 1
(11) $r_{1B} = 2 r_{1A}$
(12) $r_{1C} = -r_{1A}$
 $\frac{r_{2A}}{-2} = \frac{r_{2C}}{-3} = \frac{r_{2D}}{1}$ Reaction 2
(13) $r_{2A} = \frac{2}{3}r_{2C}$
(14) $r_{2D} = -\frac{1}{3}r_{2C}$

5. Applications of Algorithm XII

- Example B: Liquid phase CSTR 2 Solution 3
 - Selectivity (15) $S_{C/D} = \frac{F_C}{(F_D + 0.001)}$
 - Parameters (16) $v_0 = 100 \text{ dm}^3/\text{min}$

(17)
$$k_{1A} = 10 \left(\frac{dm^3}{mol} \right)^2 / \min$$

(18)
$$k_{2C} = 15 \left(\frac{dm^3}{mol} \right)^4 / \min$$

(19) $V = 2,500 \text{ dm}^3$

(20)
$$C_{A0} = 2.0$$

(21) $C_{B0} = 2.0$

5. Applications of Algorithm XIII

• Example C: Gas phase PFR, no pressure drop

- Same rxns, rate laws, and rate constants as example A
 - $\begin{array}{lll} A+2B \rightarrow C \ \ (1) \ \ -r_{1A} = k_{1A}C_AC_B{}^2 \ \ NOTE: \ The \ specific \\ reaction \ rate \ k_{1A} \ is \\ defined \ wrt \ species \ A \end{array}$

$$\label{eq:second} \begin{array}{l} 3C+2A \rightarrow D \ (2) \ -r_{2C} = k_{2C} C_C{}^3 C_A{}^2 & \mbox{NOTE: The specific} \\ reaction \ rate \ k_{2C} \ is \\ defined \ wrt \ species \ C \end{array}$$

- The complex gas phase reactions take place in a PFR.
- feed is equal molar in A and B with $F_{A0} = 10$ mol/min
- volumetric flow rate is 100 dm³/min.
- reactor volume 1,000 dm³, no pressure drop
- total entering concentration is $C_{T0} = 0.2 \text{ mol/dm}^3$

5. Applications of Algorithm XIV

- Example C: Gas phase PFR, no pressure drop 2
 - The complex gas phase reactions take place in a PFR.
 - rate constants

$$k_{1A} = 100 \left(\frac{dm^3}{mol}\right)^2 / min$$

Z NO Z

$$k_{2C} = 1,500 \left(\frac{dm^3}{mol} \right)^4 / min$$

• Plot F_A , F_B , F_C , F_D and $S_{C/D}^{\sim}$ as a function of V

5. Applications of Algorithm XV

Example C: Gas phase PFR, no pressure drop 3
 Sol)

- Gas phase PFR, no pressure drop
- Mole balances

(1) $\frac{dF_A}{dV} = r_A \qquad (F_{A0} = 10)$ (2) $\frac{dF_B}{dV} = r_B \qquad (F_{B0} = 10)$ (3) $\frac{dF_C}{dV} = r_C \qquad V_f = 1,000$ (4) $\frac{dF_D}{dV} = r_D$

5. Applications of Algorithm XVI

Example C: Gas phase PFR, no pressure drop 4
 Sol)

- Gas phase PFR, no pressure drop 2

• Net rates (5) $r_{A} = r_{1A} + r_{2A}$ (6) $r_{B} = r_{1B}$ (7) $r_{C} = r_{1C} + r_{2C}$ (8) $r_{D} = r_{2D}$ • Rate law (9) $r_{1A} = -k_{1A}C_{A}C_{B}^{2}$ (10) $r_{2C} = -k_{2C}C_{A}^{2}C_{C}^{3}$

5. Applications of Algorithm XVII

Example C: Gas phase PFR, no pressure drop 5
 Sol)

- Gas phase PFR, no pressure drop 3
- Relative rates

	$\frac{\mathbf{r}_{1A}}{-1} = \frac{\mathbf{r}_{1B}}{-2} = \frac{\mathbf{r}_{1C}}{1}$	Reaction 1
(11)	$r_{1B} = 2 r_{1A}$	
(12)	$r_{\rm 1C}=-r_{\rm 1A}$	
	$\frac{r_{2A}}{-2} = \frac{r_{2C}}{-3} = \frac{r_{2D}}{1}$	Reaction 2
(13)	$r_{2A} = \frac{2}{3} r_{2C}$	
(14)	$r_{2D} = -\frac{1}{3}r_{2C}$	

5. Applications of Algorithm XVIII

Example C: Gas phase PFR, no pressure drop 6
 Sol) - Gas phase PFR, no pressure drop 4

- Selectivity
- Stoichiometry

(15)
$$S_{C/D} = if (V > 0.0001) then \left(\frac{F_C}{F_D}\right) else (0)$$

(16) $C_A = C_{T0} \left(\frac{F_A}{F_T}\right) y$
(17) $C_B = C_{T0} \left(\frac{F_B}{F_T}\right) y$
(18) $C_C = C_{T0} \left(\frac{F_C}{F_T}\right) y$
(19) $C_D = C_{T0} \left(\frac{F_D}{F_T}\right) y$
(20) $\chi = 1$
(21) $F_T = F_A + F_B + F_C + F_D$

5. Applications of Algorithm XIX

Example C: Gas phase PFR, no pressure drop 7
 Sol) - Gas phase PFR, no pressure drop 5

• Parameters

(22)
$$C_{T0} = 0.2 \text{ mol/dm}^3$$

(23) $y=1$
(24) $k_{1A} = 100 (dm^3/mol)^2/min$
(25) $k_{2C} = 1,500 (dm^3/mol)^4/min$

5. Applications of Algorithm XX

Example C: Gas phase PFR, no pressure drop 8 Sol) - Gas phase PFR, no pressure drop 5

