6. Multiple Reactions

- o **Selectivity and Yield**
- o **Reactions in Series**
	- **- To give maximum selectivity**
- o **Algorithm for Multiple Reactions**
- o **Applications of Algorithm**
- o **Multiple Reactions-Gas Phase**

0. Types of Multiple Rxns I

0. Types of Multiple Rxns II

o **Complex Reactions: Series and Parallel aspects** combined $A \xrightarrow{k_1} 2B + C$

 $A + 2C \xrightarrow{k_2} 3D$

- Formation butadiene from ethanol $C_2H_5OH \longrightarrow C_2H_4+H_2O$

 $C_2H_3OH \longrightarrow CH_3CHO+H_2$

 $C_2H_4 + CH_3CHO \longrightarrow C_4H_6 + H_2O$

o Independent Reactions $A \xrightarrow{k_1} B$

$$
C \xrightarrow{k_2} D
$$

- Cracking crude oil

$$
C_{15}H_{32} \longrightarrow C_{12}C_{26} + C_3H_6
$$

$$
C_8H_{18} \longrightarrow C_6H_{14} + C_2H_4
$$

1. Selectivity and Yield I

o **Two types of selectivity**

1. Selectivity and Yield II

o **Self Test 1**

 $-$ **3 species were found in a CSTR,** C_{A0} **= 2moles/dm³**

1. Selectivity and Yield III

- o **Self Test 2**
	- **- At low temperatures**
		- **1) Little conversion of A**
	- **2) Little B formed**
	- **3) Mostly C formed (but not too much because of the low conversion - 15 to 30% - of A)**
	- **- At high temperatures**
		- **1) Virtually complete conversion of A**
	- **2) Mostly B formed**

1. Selectivity and Yield IV

- o **Self Test 3**
	- **- Data suggest 2 reactions**
		- (1) $A \xrightarrow{k_1} B$ $-r_{1A} = k_1 C_A = C_A A_1 e^{-E_1/RT} = r_B$

$$
(2) \qquad A \xrightarrow{ k_2} C \qquad \hspace{a} \hspace{
$$

- **- Reaction (1) is dominant at high temperatures with k¹ » k² , A¹ » A²**
- **- Reaction (2) is dominant at low temperatures k**₂ \triangleright **k**₁, **E**₂ \triangleright **E**₁

$$
-r_A = (k_1 + k_2)C_A = (A_1e^{-E_1/RT} + A_2e^{-E_2/RT})P_A
$$

1. Selectivity and Yield V

o **Self Test 4**

2. Parallel Reactions I

$$
A \longrightarrow D(\text{Desired}), \quad r_{\text{D}} = k_1 C_{\text{A}}^{\alpha}
$$

$$
A \longrightarrow U(\text{Undesired}), \quad r_{\text{U}} = k_2 C_{\text{A}}^{\beta}
$$

o **The net rate of disappearance of A**

 $r_{A} = r_{D} + r_{U}$

o **Instantaneous selectivity**

$$
S_{\rm D/U} = \frac{r_{\rm D}}{r_{\rm U}} = \frac{k_{\rm 1} C_{\rm A}^{\alpha}}{k_{\rm 2} C_{\rm A}^{\beta}} = \frac{k_{\rm 1}}{k_{\rm 2}} C_{\rm A}^{(\alpha \text{-} \beta)}
$$

- If α > β use high concentration of A. Use PFR.

- If α < β use low concentration of A. Use CSTR.

※ **Reactor Selection I**

- o **Criteria**
	- **- Selectivity**
	- **- Yield**
	- **- Temperature control**
	- **- Safety**
	- **- Cost**

А Β

※ **Reactor Selection II**

- o **Application of Batch**
	- **- High A with low B (d)**
	- **- High B with low A (e)**

※ **Reactor Selection III**

- o **Application of PFR (Membrane)**
	- **- High A with low B (f)**
	- **- High B with low A (g)**

(f) A membrane reactor or a tubular reactor with side streams

 \ge (g) A membrane reactor or a tubular reactor with side streams

※ **Reactor Selection IV**

o **Low A & B with temp. control**

※ **Reactor Selection V**

o **Reversible reaction**

- Shift equilibrium by removing C

2. Parallel Reactions II

- o **Maximizing the Selectivity - Parallel Reactions 1**
	- **-** Determine the instantaneous selectivity, S_{D/U}, for the **liquid phase reactions:**

 $A + B \longrightarrow D$ $r_D = k_1 C_A^2 C_B$ $A + B \longrightarrow U_1$ $r_{U_1} = k_2 C_A C_B$ $A + B \longrightarrow U_2$ $r_{H_2} = k_3 C_A^3 C_B$ $S_{D/U_1U_2} = \frac{r_D}{r_H + r_H} = \frac{k_1 C_A^2 C_B}{k_2 C_A C_B + k_3 C_A^2 C_B} = \frac{k_1 C_A}{k_2 + k_3 C_A^2}$

Sketch the selectivity as a function of the concentration of A. Is there an optimum and if so what is it?

2. Parallel Reactions III

o **Maximizing the Selectivity - Parallel Reactions 2**

$$
S_{D/U_1U_2} = \frac{r_D}{r_{U_1} + r_{U_2}} = \frac{k_1 C_A^2 C_B}{k_2 C_A C_B + k_3 C_A^3 C_B} = \frac{k_1 C_A}{k_2 + k_3 C_A^2}
$$

$$
\frac{dS}{dC_A} = 0 = k_1 [k_2 + k_3 C_A^{*2}] + k_1 C_A^* [k_3 C_A^*] S_{D/U_1U_2}
$$

$$
C_A^* = \sqrt{\frac{k_2}{k_3}}
$$

Use CSTR with exit concentration C* A

3. Series Reactions (p. 283)

o **Example: Series reaction in a batch reactor 1**

- **- This series reaction could also be written as**
- Reaction (1) $A \xrightarrow{k_1} B$: $-r_{1A} = k_1 C_A$
- \bullet Reaction (2) $\overline{B} \xrightarrow{k_2} \overline{C}$: $\cdot \overline{r}_{2B} = k_2 C_B$
- **- Mole balance on every species**
- **Species A** Batch Reactor $V = V_0$

$$
\frac{1}{V_{0}}\frac{dN_{A}}{dt} = r_{A}
$$

3. Series Reactions II

- o **Example: Series reaction in a batch reactor 2**
	- **- Net rate of reaction of A,** $r_A = r_{1A} + 0$
	- $r_{1A} = -k_{1A}C_{A}$
	- **- Relative rates,** r_{1B} **=-r_{1A}**

$$
\frac{dC_{_A}}{dt} = -k_{_{1A}}C_{_A}
$$

- Integrating with $C_A = C_{A0}$ **at t = 0 and then rearranging**

 $C_A = C_{A0} exp(-k_1 t)$

3. Series Reactions III

- o **Example: Series reaction in a batch reactor 3**
	- **- Net species B:** $\frac{dC_B}{dt} = r_B$
	- Net rate of reaction of B $r_B = r_{BNET} = r_{1B} + r_{2B}$
	- \cdot Rate law, r_{2B} =-k₂ C_B
	- Relative rates $r_B = k_1 C_A k_2 C_B$

$$
\frac{dC_B}{dt} = k_1 C_{A0} \exp(-k_1 t) - k_2 C_B
$$

• Combine
$$
\frac{dC_B}{dt} + k_2 C_B = k_4 C_{A0} exp(-k_4 t)
$$

3. Series Reactions IV

- o **Example: Series reaction in a batch reactor 4**
	- **- Using the integrating factor, i.f.: (p 1012, A 3)** i.f. = $\exp\int k_2 dt = \exp(k_2 t)$

• Evaluate
$$
\frac{d[C_B \exp(k_2 t)]}{dt} = k_1 C_{A0} \exp(k_2 - k_1)t
$$

\n• at $t = 0$, $C_B = 0$
\n
$$
C_B = \frac{k_1 C_{A0}}{k_2 - k_1} [\exp(-k_1 t) - \exp(-k_2 t)]
$$

3. Series Reactions V

- o **Example: Series reaction in a batch reactor 5**
	- **- Optimization of the desired product B**

- Species C, C_C = C_{A0} - C_B - C_A

$$
C_C = \frac{C_{A0}}{k_2 - k_1} \left[k_2 \left(1 - e^{-k_1 t} \right) - k_1 \left(1 - e^{-k_2 t} \right) \right]
$$

3. Series Reactions VI

- o **Self Test 1**
	- **- Concentration-time trajectories**
	- **- Which of the following reaction pathways best describes the data:**

3. Series Reactions VII

- o **Self Test 2**
	- **- Concentration-time trajectories**
	- **- Sketch the concentration-time trajectory for the reaction**6.00

$$
I) \left(A + B \longrightarrow C \right)
$$

2)
$$
B + C \longrightarrow D
$$

$$
C_{A0}=4\left\vert mol\right/ dm^{3}\right\vert .
$$

$$
C_{B0}=6\ \mathrm{mol}/\,\mathrm{dm}^3
$$

 $C_{CD} = C_{D0} = 0$

4. Algorithm for Complex Reactions I

4. Algorithm for Complex Reactions II

4. Algorithm for Complex Reactions III

o **Mole Balances (p 327)**

4. Algorithm for Complex Reactions IV

o **Rates 1**

- Number every reaction (1) $2A \rightarrow B$

(2) $A+3B \rightarrow 2C$

- Rate laws for every reaction

(1)
$$
r_{1A} = -k_{1A}C_A^2
$$

(2) $r_{2A} = -k_{2A}C_AC_B$ (non elementary)

- Relative rates for each reaction for a given reaction *i*

$$
(i) a_i A + b_i B \rightarrow c_i C + d_i D
$$

4. Algorithm for Complex Reactions V

o **Rates 2**

- Relative rates for each reaction 2

$$
\frac{r_{iA}}{-a_i} = \frac{r_{iB}}{-b_i} = \frac{r_{iC}}{c_i} = \frac{r_{iD}}{d_i}
$$

\n
$$
r_{iB} = \frac{-r_{iA}}{2} = \frac{k_{1A}}{2} C_A^2
$$

\n
$$
RXN 2: \frac{r_{2A}}{-1} = \frac{r_{2B}}{-3} = \frac{r_{2C}}{2}
$$

\n
$$
r_{2B} = 3r_{2A}
$$

\n
$$
r_{2C} = -2r_{2A}
$$

4. Algorithm for Complex Reactions VI

o **Rates 3**

- Net rate of formation for species A that appears in N reactions

$$
r_A = \sum_{i=1}^{N} r_{iA} \qquad r_A = r_{1A} + r_{2A} = -k_{1A}C_A^2 - k_{2A}C_AC_B
$$

$$
r_B = r_{1B} + r_{2B} = \frac{1}{2}k_{1A}C_A - 3k_{2A}C_AC_B
$$

$$
r_C = r_{1C} + r_{2C} = 0 + 2k_{2A}C_AC_B
$$

4. Algorithm for Complex Reactions VII

o **Stoichiometry**

- **- Net rate of formation for species A that appears in N reactions**
- **- NOTE: We could use the gas phase mole balance for liquids and then just express the concentration as** Flow $C_A = F_A/v_0$ Batch $C_A = N_A/V_0$

$$
c_{i} = c_{T0} \frac{F_{i}}{F_{T}} \frac{T_{0y}}{T}
$$

$$
F_{T} = \sum F_{i} = F_{A} + F_{B} + \dots
$$

4. Algorithm for Complex Reactions VIII

- o **Self Test**
	- **- Writing net rates of formation**
		- **The reactions are elementary. Write the net rates of formation for A, B, C and D** \sim \sim

(1)
$$
A + 2B \rightarrow 2C
$$
 $k_{1A} = 0.1 \left(dm^3 / mol \right) / min$

(2)
$$
2C + \frac{1}{2}B \rightarrow 3D \qquad k_{2D} = 2\left(\frac{dm}{2}\right)^{3/2}/\text{min}
$$

Sol) A
$$
\mathbf{r}_A = \mathbf{r}_{1A} + \mathbf{r}_{2A} = \mathbf{r}_{1A} + 0
$$

$$
\mathbf{r}_{1A} = -\mathbf{k}_{1A} C_A C_B^2
$$

$$
\mathbf{r}_A = -\mathbf{k}_{1A} C_A C_B^2
$$

4. Algorithm for Complex Reactions IX

o **Self Test 2**

4. Algorithm for Complex Reactions X

o **Self Test 3**

C
$$
r_C = r_{1C} + r_{2C}
$$

\n
$$
\frac{r_{1C}}{2} = \frac{r_{1A}}{-1}
$$
\n
$$
r_{1C} = 2k_{1A}C_A C_B^2
$$
\n
$$
\frac{r_{2C}}{-2} = \frac{r_{2D}}{3}
$$
\n
$$
r_{2C} = -\frac{2}{3}k_{2D}C_C^2 C_B^{1/2}
$$
\n
$$
r_{2C} = -\frac{2}{3}k_{2D}C_C^2 C_B^{1/2}
$$

4. Algorithm for Complex Reactions XI

o **Self Test 4**

D $r_D = r_{1D} + r_{2D} = r_{2D}$

- **- These net rates of reaction are now coupled with the appropriate mole balance of A, B, C, and D and solved using a numerical software package.**
	- **For example for a PFR:**

$$
\frac{dF_A}{dV} = -k_{1A}C_A C_B^2
$$

$$
\frac{dF_B}{dV} = -2k_{1A}C_A C_B^2 - \frac{1}{6} C_B^{1/2} C_C^2
$$

5. Applications of Algorithm I

$$
A + 2B \rightarrow C \quad (1) \quad -r_{1A} = k_{1A}C_A C_B^2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}
$$

3C + 2A \rightarrow D \quad (2) \quad -r_{2C} = k_{2C} C_C^3 C_A^2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}

NOTE: The specific reaction rate k1A is defined wrt species A.

NOTE: The specific reaction rate k_{2C} is defined wrt species C.

5. Applications of Algorithm II

- o **Example A: Liquid phase PFR 1**
	- **- The complex liquid phase reactions follow elementary rate laws**
		- **(1)** $A + 2B \rightarrow C$ -r_{1A} = k_{1A}C_AC_B² (2) 2A + 3C \rightarrow D $-r_{2C} = k_{2C}C_A{}^2C_B{}^3$
	- $-$ **Equal molar in A and B with** F_{A0} **= 200 mol/min and the volumetric flow rate is 100 dm³ /min. The reaction volume is 50 dm³ and the rate constants are**

$$
k_{1A} = 10 \left(\frac{dm^3}{mol}\right)^2 / min \qquad k_{2C} = 15 \left(\frac{dm^3}{mol}\right)^4 / min
$$

- Plot F^A , F^B , F^C , F^D and SC/D as a function of V

5. Applications of Algorithm III

- o **Example A: Liquid phase PFR 2**
	- **- Solution**
	- **Mole balances**

(1)
\n
$$
\frac{dF_A}{dV} = r_A
$$
\n
$$
\frac{dF_B}{dV} = r_B
$$
\n(2)
\n
$$
\frac{dF_B}{dV} = r_B
$$
\n
$$
\frac{dF_C}{dV} = r_C
$$
\n(3)
\n
$$
\frac{dF_D}{dV} = r_D
$$
\n(4)

5. Applications of Algorithm IV

- o **Example A: Liquid phase PFR 3**
	- **- Solution**
	- **Net rates**

• **Rate laws**

 $r_{1A} = -k_{1A}C_A C_B^2$ (9)

 $r_{2C} = -k_{2C}C_A^2C_C^3$ (10)

5. Applications of Algorithm V

- o **Example A: Liquid phase PFR 4**
	- **- Solution**
	- **Relative rates**

5. Applications of Algorithm VI

- o **Example A: Liquid phase PFR 5**
	- **- Solution**
	- **Selectivity**
	- *If* one were to write $S_{C/D} = F_C/F_D$ in the Matlab **program, Matlab would not execute because at V = 0** $F_c = 0$ resulting in an undefined volume (infinity) at **V = 0. To get around this problem we start the calculation 10-4 dm³ from the reactor entrance where F_D** will note be zero and use the following IF **statement.**

(15)
$$
\tilde{S}_{C/D} = \text{if } (V > 0.001) \text{ then } \left(\frac{F_C}{F_D}\right) \text{ else } (0)
$$

5. Applications of Algorithm VII

- o **Example A: Liquid phase PFR 6**
	- **- Solution**
	- **Stoichiometry Parameters**

- (16) $C_A = F_A/v_0$ $v_0 = 100$ dm³/min (20) (17) $C_B = F_B/v_0$ $k_{1A} = 10$ $\left(\frac{\text{dm}^3}{\text{mol}}\right)^2$ min (21) (18) $C_C = F_C/v_0$ $k_{2C} = 15 \text{ (dm}^3/\text{mol})^4/\text{min}$
- (19) $C_D = F_D/v_0$

 (22)

5. Applications of Algorithm VIII

- o **Example A: Liquid phase PFR 7**
	- **- Solution**

5. Applications of Algorithm IX

- o **Example B: Liquid phase CSTR 1**
	- **- Same rxns, rate laws, and rate constants as example A**
		- $A + 2B \rightarrow C$ (1) $-r_{1A} = k_{1A}C_A C_B^2$ NOTE: The specific **reaction rate** k_{1A} **is defined wrt species A**

3C + 2A
$$
\rightarrow
$$
 D (2) $-r_{2C} = k_{2C}C_C^3C_A^2$ NOTE: The specific
reaction rate k_{2C} is
defined wrt species C

- **- Liquid phase reactions take place in a 2,500 dm³ CSTR.**
- equal molar in A and B with F_{A0} = 200 mol/min,
- $v_0 = 100 \text{ dm}^3/\text{min}, V_0 = 50 \text{ dm}^3.$
- **- Find the concentrations of A, B, C, and D exiting the reactor along with the exiting selectivity.**
- **- Plot F^A , F^B , F^C , F^D and SC/D as a function of V**

5. Applications of Algorithm X

- o **Example B: Liquid phase CSTR 2 – Solution**
	- **- Liquid CSTR**
	- Mole balances (1) $f(C_A) = v_0 C_{A0} v_0 C_A + r_A V$
		- (2) $f(C_B) = v_0 C_{B0} v_0 C_B + r_B V$
		- (3) $f(C_C) = -v_0C_C + r_C V$
		- (4) $f(C_D) = -v_0C_D + r_D V$

 $r_D = r_{2D}$

• Net rates

 (5) $r_A = r_{1A} + r_{2A}$ (6) $r_{\rm R} = r_{\rm 1R}$ (7) $r_{C} = r_{1C} + r_{2C}$

Apr/18 **2011 Spring 2011** Spring 2011 1997/18 2012 1998

 (8)

5. Applications of Algorithm XI

o **Example B: Liquid phase CSTR 2 – Solution 2**

• **Rate laws** (9)
$$
r_{IA} = -k_{1A}C_A C_B^2
$$

\n• **Net rates** (10) $r_{2C} = -k_{2C}C_A^2 C_C^3$
\n
$$
\frac{r_{1A}}{-1} = \frac{r_{1B}}{-2} = \frac{r_{1C}}{1}
$$
\n(11) $r_{1B} = 2 r_{1A}$
\n(12) $r_{1C} = -r_{1A}$
\n
$$
\frac{r_{2A}}{-2} = \frac{r_{2C}}{-3} = \frac{r_{2D}}{1}
$$
\nRecation 2
\n(13) $r_{2A} = \frac{2}{3}r_{2C}$
\n(14) $r_{2D} = -\frac{1}{3}r_{2C}$

5. Applications of Algorithm XII

- o **Example B: Liquid phase CSTR 2 – Solution 3**
	- $S_{C/D} = \frac{F_C}{(F_D + 0.001)}$ **• Selectivity** (15)
	- **Parameters** $v_0 = 100$ dm³/min (16)

 $\big($

17)
$$
k_{1A} = 10 \text{ (dm}^3/\text{mol})^2/\text{min}
$$

$$
(18) \qquad k_{2C} = 15 \text{ (dm}^3/\text{mol})^4/\text{min}
$$

 $V = 2,500$ dm³ (19)

$$
C_{A0} = 2.0
$$

 $C_{\text{B0}} = 2.0$ (21)

5. Applications of Algorithm XIII

o **Example C: Gas phase PFR, no pressure drop**

- **- Same rxns, rate laws, and rate constants as example A**
	- $A + 2B \rightarrow C$ (1) $-r_{1A} = k_{1A}C_A C_B^2$ NOTE: The specific **reaction rate** k_{1A} **is defined wrt species A**

3C + 2A
$$
\rightarrow
$$
 D (2) $-r_{2C} = k_{2C}C_C^3C_A^2$ NOTE: The specific
reaction rate k_{2C} is
defined wrt species C

- **- The complex gas phase reactions take place in a PFR.**
- feed is equal molar in A and B with F_{A0} = 10 mol/min
- **volumetric flow rate is 100 dm³ /min.**
- **reactor volume 1,000 dm³ , no pressure drop**
- **total entering concentration is** $C_{T0} = 0.2$ **mol/dm³**

5. Applications of Algorithm XIV

- o **Example C: Gas phase PFR, no pressure drop 2**
	- **- The complex gas phase reactions take place in a PFR.**
		- **rate constants**

$$
k_{1A} = 100 \left(\frac{dm^3}{mol}\right)^2 / min
$$

 ϵ and ϵ and ϵ

$$
k_{2C} = 1,500 \left(\frac{dm^3}{mol}\right)^4 / min
$$

• Plot F_A, F_B, F_C, F_D and S[~]_{C/D} as a function of V

5. Applications of Algorithm XV

o **Example C: Gas phase PFR, no pressure drop 3 Sol)**

- **- Gas phase PFR, no pressure drop**
	- **• Mole balances**

 $\frac{dF_A}{dV} = r_A$ $(F_{A0} = 10)$ (1) $\frac{dF_B}{dr} = r_B$ $(F_{B0} = 10)$ (2) dM. $\frac{dF_C}{dr} = r_C$ $V_f = 1,000$ (3) AY $\frac{\mathrm{d} \mathbf{F}_{\mathrm{D}}}{\mathrm{d} \mathbf{V}} = \mathbf{r}_{\mathrm{D}}$ (4)

5. Applications of Algorithm XVI

o **Example C: Gas phase PFR, no pressure drop 4 Sol)**

- Gas phase PFR, no pressure drop 2

• Net rates (5) $r_A = r_{1A} + r_{2A}$ (6) $r_B = r_{1B}$ (7) $r_{C} = r_{1C} + r_{2C}$ (8) $r_{D} = r_{2D}$ **• Rate law** $r_{1A} = -k_{1A} C_A C_B^2$ (9) $r_{\gamma C} = -k_{\gamma C} C_{\Lambda}^2 C_C^3$ (10)

5. Applications of Algorithm XVII

o **Example C: Gas phase PFR, no pressure drop 5 Sol)**

- **- Gas phase PFR, no pressure drop 3**
- **• Relative rates**

(11)
\n
$$
\frac{r_{1A}}{-1} = \frac{r_{1B}}{-2} = \frac{r_{1C}}{1}
$$
\n
$$
r_{1B} = 2 r_{1A}
$$
\n
$$
r_{1C} = -r_{1A}
$$
\n
$$
\frac{r_{2A}}{-2} = \frac{r_{2C}}{-3} = \frac{r_{2D}}{1}
$$
\n
$$
r_{2A} = \frac{2}{3} r_{2C}
$$
\n
$$
r_{2D} = -\frac{1}{3} r_{2C}
$$
\n(14)
\n
$$
r_{2D} = -\frac{1}{3} r_{2C}
$$

5. Applications of Algorithm XVIII

o **Example C: Gas phase PFR, no pressure drop 6 Sol) - Gas phase PFR, no pressure drop 4**

- **• Selectivity**
- **Stoichiometry**

• Selectivity
\n• Stoichiometry
\n(15)
$$
S_{C/D} = \text{if } (V > 0.0001) \text{ then } \left(\frac{F_C}{F_D}\right) \text{ else } (0)
$$

\n• Stoichiometry
\n(16) $C_A = C_{T0} \left(\frac{F_A}{F_T}\right) y$
\n(17) $C_B = C_{T0} \left(\frac{F_B}{F_T}\right) y$
\n(18) $C_C = C_{T0} \left(\frac{F_C}{F_T}\right) y$
\n(19) $C_D = C_{T0} \left(\frac{F_D}{F_T}\right) y$
\n(20) $y = 1$
\n(21) $F_T = F_A + F_B + F_C + F_D$

5. Applications of Algorithm XIX

o **Example C: Gas phase PFR, no pressure drop 7 Sol) - Gas phase PFR, no pressure drop 5**

• Parameters

(22)
$$
C_{T0} = 0.2 \text{ mol/dm}^3
$$

\n(23) $y=1$
\n(24) $k_{1A} = 100 \text{ (dm}^3/\text{mol})^2/\text{min}$
\n(25) $k_{2C} = 1,500 \text{ (dm}^3/\text{mol})^4/\text{min}$

5. Applications of Algorithm XX

o **Example C: Gas phase PFR, no pressure drop 8 Sol) - Gas phase PFR, no pressure drop 5**

