
6. Flow Systems XIV
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o Express concentration as a function of conversion 
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4. Isothermal Reactor Design

o Objectives

- Describe the CRE algorithm that allows the reader 

to solve chemical reaction engineering problems 

through logic rather than memorization.

- Size batch reactors, semibatch reactors, CSTRs, 

PFRs, PBRs, membrane reactors, and microreactors

for isothermal operation given the rate law and feed 

conditions. 

- Account for the effects of pressure drop on 

conversion in packed bed tubular reactors and in 

packed bed spherical reactors



1. Algorithm for Isothermal Reactor Design I
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o Isothermal reactor design algorithm for conversion

1)

2) Apply mole balance to reactor type

3) Is -rA = f(X) given? ⇒ Then evaluate the equation

4) If not, determine the rate law in terms of conc.

5) Use stoichiometry to express conc. as a function of 

conversion

6) Combine step 4) & 5) to obtain -rA = f(X)

7) Consider volume change

8) Combine 4) ~ 7) and solve ODE (Polymath)

dt
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1. Algorithm for Isothermal Reactor Design II
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1. Algorithm for Isothermal Reactor Design III
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2. Applications/Examples of the CRE Algorithm I
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Gas Phase 

Elementary 

Reaction 

Additional Information 

Only A fed P0 = 8.2 atm

T0 = 500 K CA0 = 0.2 mol/dm3

k = 0.5 dm3/mol·s vo = 2.5 dm3/s

Solve for X = 0.9 for A is limiting

2A → B



2. Applications/Examples of the CRE Algorithm II
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Reactor Mole Balance Rate Law Stoichiometry

Batch

CSTR
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2. Applications/Examples of the CRE Algorithm III
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Reactor Stoichiometry 2

Batch

CSTR

PFR

Per mole A ?

Per mole A

A → ½B

ε = 1.0(1- ½) = -0.5

Per mole A

A → ½B

ε = 1.0(1- ½) = -0.5
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2. Applications/Examples of the CRE Algorithm IV
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Reactor Stoichiometry 3
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2. Applications/Examples of the CRE Algorithm V
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Reactor Combine Integration

Batch

CSTR

PFR
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2. Applications/Examples of the CRE Algorithm VI
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Reactor Evaluate For X = 0.9

Batch

CSTR

PFR

kCA0 = (0.5)(0.2) 

= 0.1 s-1

kC2
A0 = (0.5)(0.2)2

= 0.02mol/dm3·s

FA0 = CA0·v0

= (0.2)(2.5) = 0.5 mol/s

t = 90 s

V = 680.6 dm3

τ = V/v0 = 272.3 s

V = 90.7 dm3

τ = V/v0 = 36.3 s



3. Design of CSTRs I
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o Single CSTR 1

- Design equation

- Substitute FA0 = v0CA0

- Space time τ

- 1st order rxn assume

- Rearranging 
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3. Design of CSTRs II
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o Single CSTR 2

- CA = CA0(1 - X)

- Damköhler number ⇒ dimensionless number

• quick estimate of the degree on conversion 

achieved by continuous reactors
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3. Design of CSTRs III
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o Single CSTR 3

- Damköhler number for a 1st order irrev. rxn

- Damköhler number for a 2nd order irrev. rxn

- Rule of thumb

• if Da < 0.1, then X < 0.1

• if Da > 10, then X > 0.9

☞ 1st order rxn, X = Da/(1 + Da)
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3. Design of CSTRs IV
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o CSTR in series 1

- 1st order irrev. rxn with no change in volumetric flow 

rate, effluent of the first reactor

- For 2nd reactor

- Solving for CA2

- For n CSTRs in series

- n tank in series
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3. Design of CSTRs V
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o CSTR in series 2
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3. Design of CSTRs VI
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o CSTR in parallel 1

- One large reactor of volume V

o 2nd order reactor in a CSTR

- Dividing by v0

- For conversion X
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4. Tubular Reactors I
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o Design equation

- Differential form

• Q or ∆P

- Integral form

• no Q or ∆P

o 2nd order reactor in a PFR 1
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4. Tubular Reactors II
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o 2nd order reactor in a PFR 2

- Liquid phase reaction (v = v0)

• combining MB & rate law

• conc. of A, 

• combining

• solving for X 
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4. Tubular Reactors III

Mar/24 2011 Spring 20

o 2nd order reactor in a PFR 3

- Gas phase reaction (T = T0, P = P0)

• conc. of A, 

• combining
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5. Pressure Drop in Reactors I
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o Pressure Drop and the Rate Law

- In PBR in terms of catalyst weight

• rate equation, 

• stoichiometry

• isothermal 
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5. Pressure Drop in Reactors II
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o Flow through a Packed Bed

- Ergun equation

• pressure drop in packed bed
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