Simple least squares

Summary

- \rightarrow Model form: $y = a_0 + a_1x + e$
- becomes minimizes where $\frac{\partial S_r}{\partial r} = 0 \& \frac{\partial S_r}{\partial r} = 0.$ $S_r \cap R$ ² ∂S $\overline{a_0}$ – $\overline{\alpha}$ $\overline{\alpha}$ ∂S_r ∂S_r $=0 \& \frac{\partial S_r}{\partial t}=0$ $\overline{\partial a_0}$ – $0 \propto \overline{\partial a_1}$

Rearranging and solving for a_0 and a_1

4 Rearranging and solving for
$$
a_0
$$
 and a_1

\n
$$
na_0 + (\sum x_i)a_1 = \sum y_i \qquad (\sum x_i)a_0 + (\sum x_i^2)a_1 = \sum x_i y_i
$$
\n
$$
a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2} \qquad a_0 = \overline{y} - a_1 \overline{x}
$$
\nQuestion: what if our model we want to find is non-linear?

\nEx. Activation energy in rate constant

\n
$$
k = k_0 e^{-\frac{E}{\sqrt{x}}}
$$
\n2010-11-03

\n38 ± 8 ± 04, 9 ± 02010

Question: what if our model we want to find is non-linear?

Ex. Activation energy in rate constant

$$
k=k_0e^{-E_{RT}}
$$

→ Linearize !

Linearization

- Want to model non-linear relationships between independent (*x*) and dependent (*y*) variables.
	- 1. Make a simple linear model through a suitable transformation.

$$
y = f(x) + e \quad \Rightarrow \quad y = a_0 + a_1 x + e
$$

2. Use previous results (simple least squares)

$$
a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}
$$

$$
a_0 = \overline{y} - a_1 \overline{x}
$$

※Caution: transformation also changes P.D.F of variables (and errors) We will discuss about this in model assessment.

Linearization (Cont.)

2010-11-03 공정 모형 및 해석**,** 유준**© 2010 24**

 \boldsymbol{x}

Polynomial regression

◆ For quadratic form

$$
y = a_0 + a_1 x + a_2 x^2 + e
$$

 \rightarrow Sum of squares

$$
S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2
$$

Again, S_r has a parabolic shape w.r.t $a_{\rm o}$, $a_{\rm 1}$, and $a_{\rm 2}$. with plus signs of a_0^2 , a_1^2 , and a_2^2 .

$$
\frac{\partial S_r}{\partial a_0} = -2\sum (y_i - a_0 - a_1 x_i - a_2 x_i^2) = 0
$$

$$
\frac{\partial S_r}{\partial a_1} = -2\sum x_i (y_i - a_0 - a_1 x_i - a_2 x_i^2) = 0
$$

$$
\frac{\partial S_r}{\partial a_2} = -2\sum x_i^2 (y_i - a_0 - a_1 x_i - a_2 x_i^2) = 0
$$

2010-11-03 공정 모형 및 해석**,** 유준**© 2010 25**

Polynomial regression (Cont.)

 \rightarrow Rearranging the previous equations gives

Rearranging the previous equations gives
\n
$$
(n)a_0 + (\sum x_i)a_1 + (\sum x_i^2)a_2 = \sum y_i
$$
\n
$$
(\sum x_i)a_0 + (\sum x_i^2)a_1 + (\sum x_i^3)a_2 = \sum x_i y_i
$$
\n
$$
(\sum x_i^2)a_0 + (\sum x_i^3)a_1 + (\sum x_i^4)a_2 = \sum x_i^2 y_i
$$
\n
$$
\sum x_i^2 \sum x_i^2 \sum x_i^3 \sum x_i^4 \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \\ \sum x_i^2 y_i \end{bmatrix}
$$

the above equations can be solved easily. (three unknowns and three equations.)

For general polynomials

$$
y = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m + e
$$

From the results of two cases ($y = a_0 + a_1 x \& y = a_0 + a_1 x + a_2 x^2$)

$$
\frac{\partial S_r}{\partial a_0} = \frac{\partial S_r}{\partial a_1} = \dots = \frac{\partial S_r}{\partial a_m} = 0
$$

we need to solve (*m*+1) linear algebraic equations for (*m*+1) parameters. ∂a_0 ∂a_1 ∂a_m
 2010-11-03 We need to solve (m+1) linear algebraic equations for (m+1) parameters.

2010-11-03 공정 모형 및 해석,유준© 2010

Multiple least squares

Consider when there are more than two independent variables, $x_1, x_2,$ $..., x_m$. \rightarrow regression plane.

$$
y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_m x_m + e
$$

For 2-D case, $y = a_0 + a_1x_1 + a_2x_2$.

Again, S_r has a parabolic shape w.r.t $a_{\rm o}$, $a_{\rm 1}$.

$$
S_r = \sum (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i})^2
$$

$$
\frac{\partial S_r}{\partial a_0} = -2 \sum (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i}) = 0
$$

$$
\frac{\partial S_r}{\partial a_1} = -2 \sum x_{1,i} (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i}) = 0
$$

$$
\frac{\partial S_r}{\partial a_2} = -2 \sum x_{2,i} (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i}) = 0
$$

Multiple least squares (Cont.)

Rearranging and solve for a_0 , a_1 and a_2 gives

$$
\left(\begin{matrix} n & \sum x_{1,i} & \sum x_{2,i} \\ \sum x_{1,i} & \sum x_{1,i}^2 & \sum x_{1,i} x_{2,i} \\ \sum x_{2,i} & \sum x_{1,i} x_{2,i} & \sum x_{2,i}^2 \end{matrix}\right) \left(\begin{matrix} a_1 \\ a_2 \\ a_3 \end{matrix}\right) = \left(\begin{matrix} \sum y_i \\ \sum x_{1,i} y_i \\ \sum x_{2,i} y_i \end{matrix}\right)
$$

◆ For an m-dimensional plane,

$$
y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_m x_m + e
$$

 \rightarrow Same as in general polynomials,

$$
\frac{\partial S_r}{\partial a_0} = \frac{\partial S_r}{\partial a_1} = \dots = \frac{\partial S_r}{\partial a_m} = 0
$$

we need to solve (*m*+1) linear algebraic equations for (*m*+1) parameters.

General least squares

The following form includes all cases (simple least squares, polynomial regression, multiple regression)

$$
y = a_0 z_0 + a_1 z_1 + a_2 z_2 + \dots + a_m z_m + e
$$

where $z_0, z_1, ..., z_m$: $m + 1$ different functions

Ex. Simple and multiple least squares

$$
Z_0 = 1, Z_1 = x_1, Z_2 = x_2, \cdots, Z_m = x_m
$$

polynomial regression

$$
Z_0 = x^0 = 1, Z_1 = x^1, Z_2 = x^2, \dots, Z_m = x^m
$$

 \rightarrow Same as before,

$$
\frac{\partial S_r}{\partial a_0} = \frac{\partial S_r}{\partial a_1} = \dots = \frac{\partial S_r}{\partial a_m} = 0
$$

we need to solve (*m*+1) linear algebraic equations for (*m*+1) parameters. ∂a_0 ∂a_1 ∂a_m
we need to solve $(m+1)$ linear algebraic equations for $(m+1)$ parameters.
²⁰¹⁰⁻¹¹⁻⁰³ 공정 모형 및 해석, 유준© 2010

Quantification of errors

$$
S_t = \sum (y_i - \overline{y})^2
$$

$$
S_r = \sum e_i^2
$$

= $\sum (y_i - a_0 z_{0,i} - a_1 z_{1,i} - \cdots - a_m z_{m,i})^2$

Total sum of squares around the mean for the response variable, *y*

Sum of squares of residuals around the regression line

Quantification of errors (Cont.)

$$
S_{y} = \sqrt{\frac{1}{n-1} \sum (y_i - \overline{y})^2} = \sqrt{\frac{S_t}{n-1}}
$$

Standard deviation of *y*

$$
S_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}
$$

Standard error of predicted *y* \rightarrow quantify appropriateness of regression

Quantification of errors (Cont.)

Coefficients of determination, \mathbb{R}^2

$$
R^2 = \sqrt{\frac{S_t - S_r}{S_t}}
$$

The amount of variability in the data explained by the regression model.

 $R^2 = 1$ when $S_r = 0$: perfect fit (a regression curve passes through data points) $R^2 = o$ when $S_r = S_t$: as bad as doing nothing

It is evident from the figures that a parabola is adequate. $R²$ of (b) is higher than that of (a)

Quantification of errors (Cont.)

- **Warning!** : R² ≈ 1 **does not guarantee** that the model is adequate, nor the model will predict new data well.
	- It is possible to force \mathbb{R}^2 to be one by adding as many terms as there are observations.
	- S_r can be big when variance of random error is large.

(Usual assumption on error is that error is random is unpredictable)

Practice using Minitab

- (1) Wind tunnel example with higher polynomials
- (2) Simple regression with increasing random noise

Confidence intervals - coefficients

Coefficients in the regression model have confidence interval.

 $y = a_0 z_0 + a_1 z_1 + a_2 z_2 + \cdots + a_m z_m + e$

Why? They are also statistics like \bar{x} & s. That is, they are numerical quantities calculated in a sample (not entire population). They are estimated values of parameters.

$$
\widehat{\text{statistic}} \pm \widehat{A} \times \widehat{\sigma_{\text{statistic}}}
$$

Value that depends on P.D.F of the statistic & confidence level α

Standard error of the statistic

※The standard error of a statistic is the standard deviation of the sampling distribution of that statistic

Statistic that we want to find

its confidence interval

Confidence intervals – coefficients (cont.)

Matrix representation of GLS

 $y = a_0 z_0 + a_1 z_1 + a_2 z_2 + \cdots + a_m z_m + e$

$$
y = Za + e
$$

- matrix of the calculated values of the basis functions at the measured values of the independent variable - observed valued of the dependent variable $-$ unknown coefficients -residuals

$$
\mathbf{Z} = \begin{bmatrix} Z_{01} & Z_{11} & \cdots & Z_{m1} \\ Z_{02} & Z_{12} & \cdots & Z_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{0n} & Z_{1n} & \cdots & Z_{mn} \end{bmatrix} \quad \mathbf{a}^T = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} \\ \mathbf{a}^T = \begin{bmatrix} a_0 & a_1 & \cdots & a_m \end{bmatrix}
$$

m+1: number of coefficients n: number of data points

Confidence intervals – coefficients (Cont.)

→ Example

Fitting quadratic polynomials to five data points

$$
\begin{array}{c|cccc}\nx & -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\
y & 1.0 & 0.5 & 0.0 & 0.5 & 2.0\n\end{array}
$$

$$
y = a_0 + a_1 x + a_2 x^2 + e
$$

$$
y = Za + e
$$

$$
\begin{bmatrix}\n\overline{1.0} \\
0.5 \\
0.0 \\
0.0 \\
\end{bmatrix} = \begin{bmatrix}\n1 & -1.0 & 1.0 \\
1 & -0.5 & 0.25 \\
1 & 0.0 & 0.0 \\
1 & 0.5 & 0.25 \\
1 & 1.0 & 1.0\n\end{bmatrix}\n\begin{bmatrix}\ne_1 \\
e_2 \\
e_3 \\
e_4 \\
e_5\n\end{bmatrix} + \begin{bmatrix}\ne_1 \\
e_2 \\
e_3 \\
e_4 \\
e_5\n\end{bmatrix}
$$

Three unknowns Five equations

Can you solve this problem?

Confidence intervals – coefficients (Cont.)

 \blacktriangleright Solutions

 $y = Za + e$

Sum of squares of errors

$$
S_r = \sum e_i^2 = e^T e = (y - Za)^T (y - Za)
$$

$$
\frac{\partial S_r}{\partial a} = 0 \longrightarrow (Z^T Z)a = Z^T y
$$

called "normal equations"

1. LU decomposition or other methods to solve L.A.E

 $(Z^T Z)$ **a** = $Z^T y$ \implies $X^T A x = b$ "

2. Matrix inversion

$$
(\mathbf{Z}^T \mathbf{Z}) \mathbf{a} = \mathbf{Z}^T \mathbf{y} \qquad \Longrightarrow \mathbf{a} = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbf{y}
$$

computationally not efficient, but statistically useful

Confidence intervals – coefficients (Cont.)

 \rightarrow Matrix inversion approach

 $=\left(\mathbf{Z}^{T} \mathbf{Z}\right)^{\!-\!1} \mathbf{Z}^{T}$

Denote Z_{ii}^{-1} as the diagonal element of $(Z^T Z)^{-1}$ Confidence interval of estimated coefficients

$$
a_{i-1} \pm t_{n-(m+1),\alpha/2} \sqrt{S_{y}^2 \over x_{ii}^{-1}}
$$

What if confidence intervals contain zero?