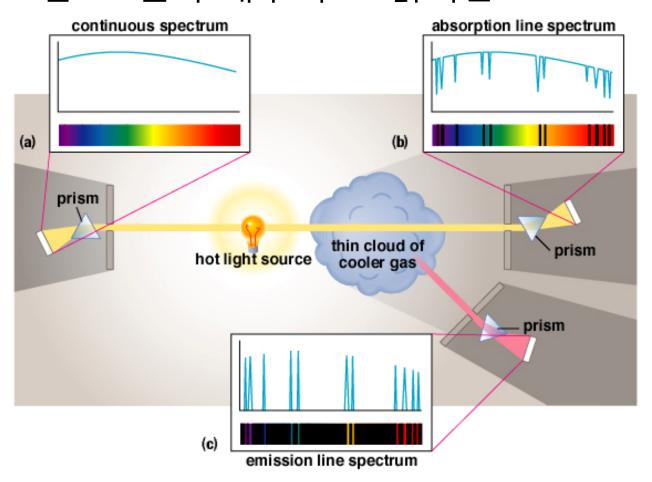
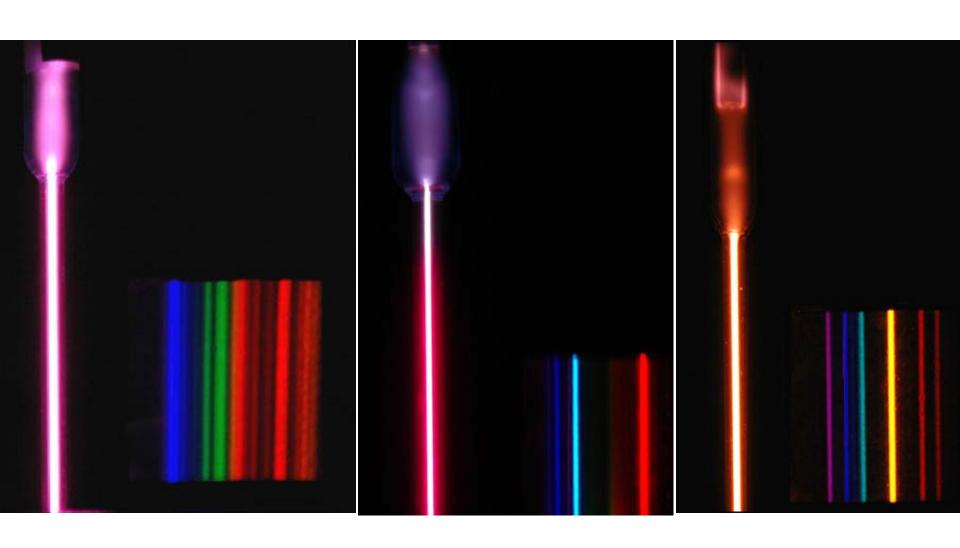
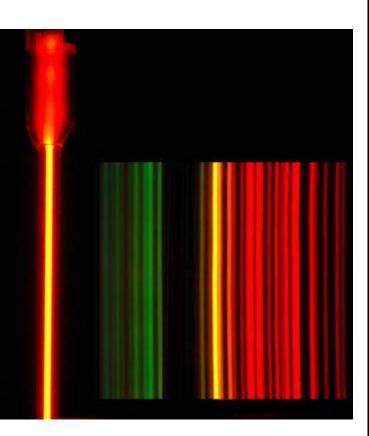
9.CM실패:수소스펙트럼

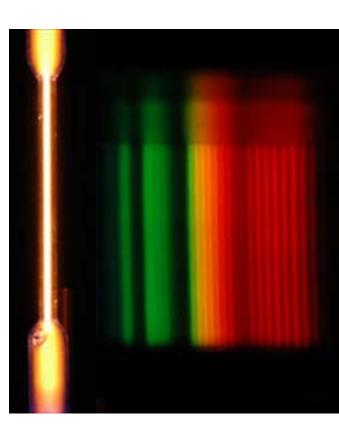

화공과 김영훈교수

휘선 관찰과 역사

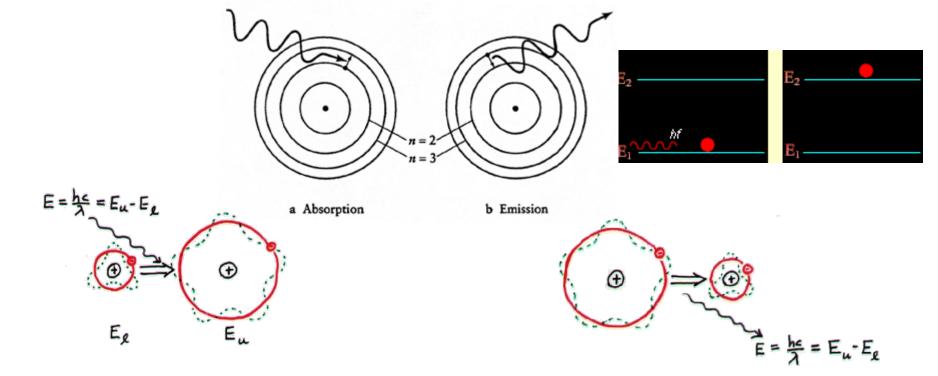

- □ 최초의 휘선 관찰
 - □ 1752년, 스코틀랜드 물리학자, Melvill
 - □ 어떤 두 원소도 똑같은 휘선을 갖지 않는다
- □ 분광기 개발
 - □ 1814년, Fraunhofer
 - □ 태양 스펙트럼: 프라운호퍼선(암선)
- □ 태양에서 He 발견
 - Krichhoff에 의해 He 발견

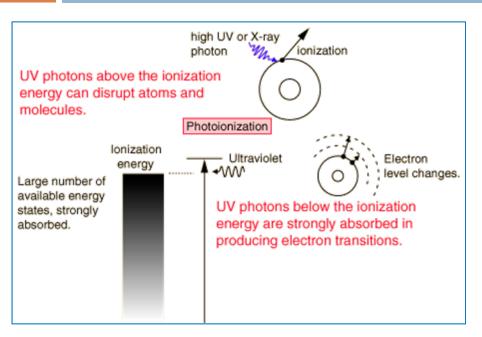
Molecular spectra


□ 차가운 기체는 가열시 방출되는 빛과 같은 진동수를 보임 → 원자 내부 구조 밝히는 clue


여러 기체의 휘선 스펙트럼(Ar, H, He)

여러 기체의 휘선 스펙트럼(Ne, Hg, N_2)





왜 휘선이 발생하는가

- □ 에너지의 흡수와 방출
 - □흡수한 에너지에 의한 전자 여기(exited state)
 - □에너지 방출과 함께 바닥 상태(ground state)

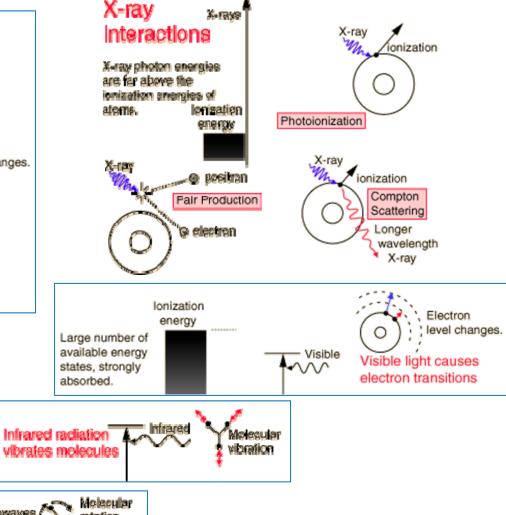
Small number of

available states.

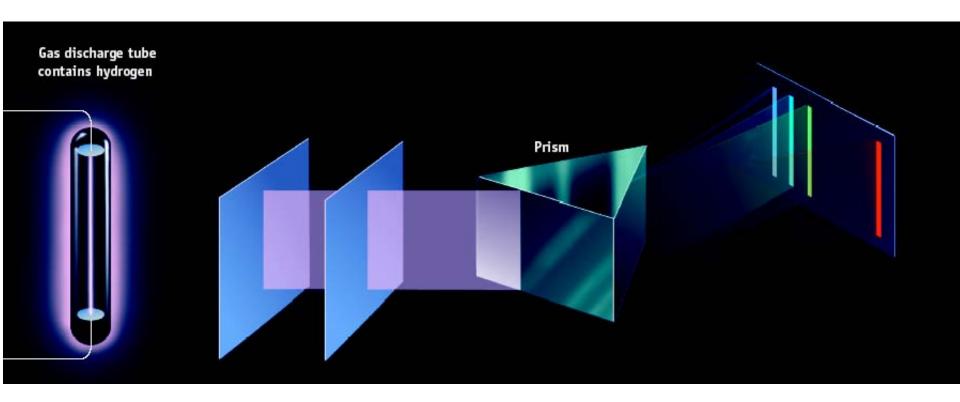
almost transparent.

Higher density of

energy levels than in-


the microwave range.

Microwaves


rotate molecules

more strongly absorbed.

Microwaves

수소 휘선 스펙트럼

수소 휘선 스펙트럼 해석

□ 수소의 경우, 가시광에서 4개의 휘선 관찰

λ (nm)	Туре	n	실측 v	계산 ν	Color
656.279	Ηα	3	457.170	457.171	Red
486.133	Нβ	4	617.190	617.181	Blue green
434.047	Нγ	5	691.228	691.242	Blue
410.174	Ηδ	6	731.493	731.473	Violet
397.007	Нε	7			
388.905	Нζ	8			
383.539	Нη	9			

Naked-eye 관찰 가능

발머에 의한 수치적 해석

- □ Balmer: 1885년, 스위스 수학교사가 해석
 - □ 4개의 파장의 규칙성 관찰(물리적 의미 없음)
 - □ 수소에 대해서만 해석 가능

- □ 규칙성 발견
 - a=364.560 nm일 때 $\rightarrow \frac{9}{5}a:\frac{16}{12}a:\frac{25}{21}a:\frac{36}{32}a$
 - $\lambda = \frac{n^2}{n^2 4}a$, n=3, 4, 5, 6
- □ 더 많은 선 존재 예측: n=7, 8, 9, ...

Rydberg equation

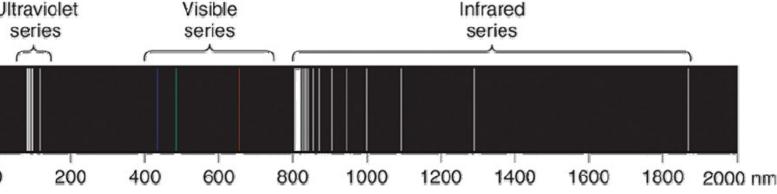
□ 파장 보다 진동수가 더 잘 맞음

$$\frac{1}{\lambda} = \frac{v}{c} = R \left(\frac{1}{(m+a)^2} - \frac{1}{(n+b)^2} \right)$$
Rydberg constant

- ■m<n 정수
- □ m, n, a, b만 알면 원자가 내는 모든 스펙트럼 계산 가능; a, b는 원자만의 상수
- □ Ex.) a=b=0 for hydrogen
 - □ 가시광 4개와 그외의 선도 예측 가능

$$\frac{1}{\lambda} = R \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$

m에 따른 휘선 계열 변화


- □ If m=1
 - Lyman 계열, UV 영역
- \square If m=2
 - □ Balmer 계열, 가시광 영역
- \square If m=3
 - □ Paschen 계열, IR 영역
- \square If m=4
 - Blackett 계열, IR 영역 Ultraviolet Visible

$$\frac{1}{\lambda} = R \left(\frac{1}{1} - \frac{1}{n^2} \right)$$

$$\frac{1}{\lambda} = R \left(\frac{1}{4} - \frac{1}{n^2} \right)$$

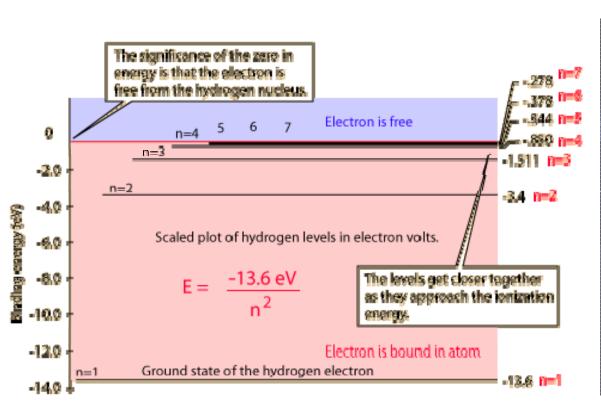
$$\frac{1}{\lambda} = R \left(\frac{1}{9} - \frac{1}{n^2} \right)$$

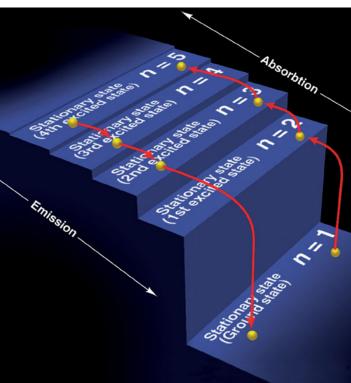
$$\frac{1}{\lambda} = R \left(\frac{1}{16} - \frac{1}{n^2} \right)$$

수소 스펙트럼 계열별 정리

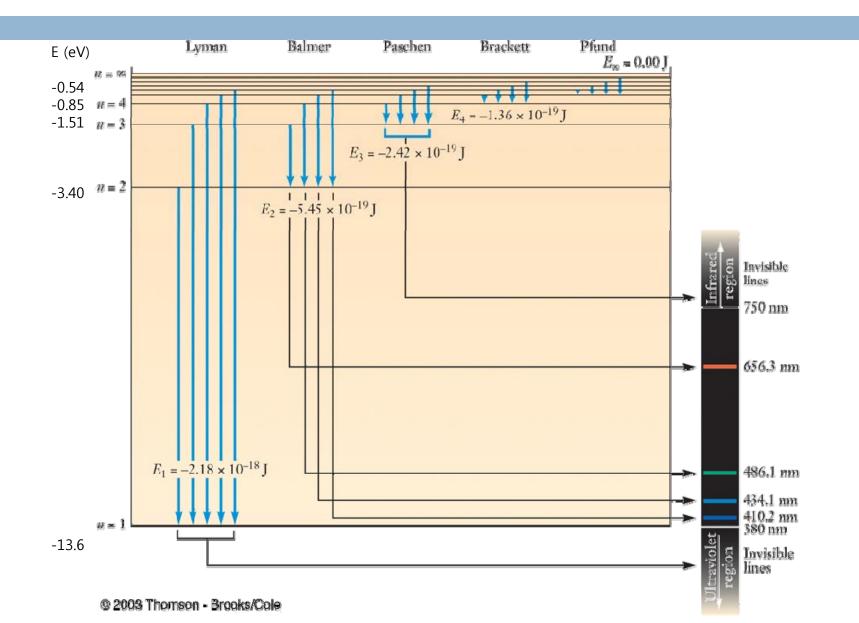
Discoverer (year)	Wavelength	m	n	
Lyman (1916)	Ultraviolet	1	>1	
Balmer (1885)	Visible, ultraviolet	2	>2	
Paschen (1908)	Infrared	3	>3	
Brackett (1922)	Infrared	4	>4	
Pfund (1924)	Infrared	5	>5	

Measured H spectrum


\A/amalamath (ama)	Dalastina latanatun	Transition	Color or region of EM spec
Wavelength (nm)	Relative Intensity	iransition	trum
Lymann Series			
93.782	•••	6 -> 1	UV
94.976	•••	5 -> 1	UV
97.254	•••	4 -> 1	UV
102.583	•••	3 -> 1	UV
121.566	•••	2 -> 1	UV
Balmer Series			
383.5384	5	9 -> 2	Violet
388.9049	6	8 -> 2	Violet
397.0072	8	7 -> 2	Violet
410.174	15	6 -> 2	Violet
434.047	30	5 -> 2	Violet
486.133	80	4 -> 2	Bluegreen (cyan)
656.272	120	3 -> 2	Red
656.2852	180	3 -> 2	Red
Paschen Series			
954.62	•••	8 -> 3	IR
1004.98	•••	7 -> 3	IR
1093.8	•••	6 -> 3	IR
1281.81	•••	5 -> 3	IR
1875.01	•••	4 -> 3	IR
Brackett Series			
2630	•••	6 -> 4	IR
4050	•••	5 -> 4	IR
Pfund Series			
7400	•••	6 -> 5	IR

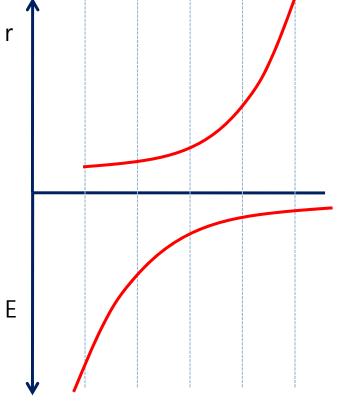

왜 두항의 차로 표시되는가

- □ 빛의 흡수/방출시
 - □ "원자 내부의 어떤 부분들이 재배열이 일어난다"
 - □전자궤도 도입의 필요성 대두 → Bohr 원자론
- □ 스펙트럼
 - □ 전자가 다른 궤도로 이동시 발생되는 빛 에너지


$$-\frac{hRc}{3^2} \rightarrow -\frac{hRc}{2^2} \quad H_{\alpha} \qquad \qquad -\frac{hRc}{4^2} \rightarrow -\frac{hRc}{2^2} \quad H_{\beta} \qquad \qquad -\frac{hRc}{5^2} \rightarrow -\frac{hRc}{2^2} \quad H_{\chi}$$

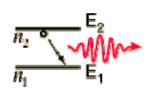
에너지 준위 plot

계열 비교: 에너지 준위 차



에너지 준위의 밀집성

- □ 에너지 준위차이로 계열 차이 발생
 - n 증가시 에너지 준위는 E=0 부근에 밀집
 - □ 단, 궤도 반경은 극단적으로 증가
 - □에너지 준위 밀집성 관련


$$E_n = -\frac{hRc}{n^2} = -\frac{2\pi^2 me^2}{n^2 h^2}$$

$$E_n \propto -\frac{1}{n^2}$$
 $r \propto n^2$

에너지 보존

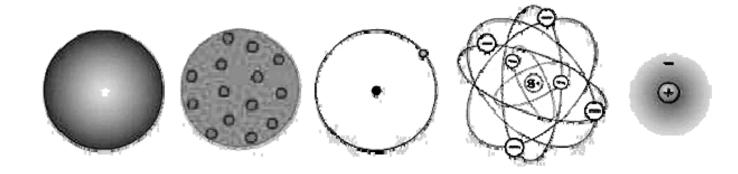
- □ 왜 특정파만 흡수/방출 하는가
 - □ 정확히 $\Delta E = h \nu$ 만큼만 방출
 - □ 여기시키는데 필요한 에너지 $\Delta E = h\nu$ 만 흡수하고, 그 이외의 에너지는 투과 시킴

A downward transition involves emission of a photon of energy:

$$E_{photon} = h v = E_2 - E_1$$

Given the expression for the energies of the hydrogen electron states:

$$hv = \frac{2\pi^2 me^4}{h^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = -13.6 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] eV$$


투과 E

조사 E

수소 스펙트럼 해석의 의미

- □ 수소의 휘선 스펙트럼
 - ■왜 line spectra가 발생하는가?
 - □ 방출 에너지는 왜 두 항의 차이로 표시되는가?
- □ 원자 구조 해석에 관한 실마리 제공
 - □ Bohr의 등장과 함께 다양한 원자 모형 제안
 - □ 양자역학에 입각한 에너지 준위 개념 확립

