Structured Model for PHB Production (PHB)

Growth and storage of PHB are described as functions of limiting substrate S (NH₄⁺), residual biomass R and product P (PHB) concentrations.

Fig. 7. Structured kinetic model for PHB synthesis.

PHB [Model]

• For the batch process,

$$\frac{\mathrm{dR}}{\mathrm{dt}} = r_{\mathrm{R}} = \mu R$$

Where rR is the rate of synthesis of R and μ is the specific rate of synthesis of R, where

$$\mu = \mu_{1} + \mu_{2} = \mu_{m,1} \frac{S}{K_{s,1} + S} + \mu_{m,2} \frac{(S/K_{s,2})^{n}}{1 + (S/K_{s,2})^{n}}$$

PHB [Model]

• For substrate

$$\frac{\mathrm{dS}}{\mathrm{dt}} = \mathbf{r}_{\mathrm{s}} = -\frac{1}{\mathbf{Y}_{\mathrm{R/S}}}\mathbf{r}_{\mathrm{R}}$$

• The rate of synthesis of $P(r_p)$ is assumed to be the sum of a growth associated term $(r_{P,1})$ and a biomass associated term $(r_{P,2})$ and is given by,

$$\frac{\mathrm{dP}}{\mathrm{dt}} = r = r_{\mathrm{P},1} + r_{\mathrm{P},2}$$

• The non-growth associated term of the synthesis of $P(r_{P,2})$

$$\mathbf{r}_{P,2} = \frac{\mathbf{K}_{1}}{(\mathbf{K}_{1} + \mathbf{S})} (-\mathbf{k}_{1}\mathbf{P} + \mathbf{k}_{2}\mathbf{R})$$

PHB [Program]

M-file

PHB [Program]

Command window

A MATLAB Command Window	
<u>Eile Edit Window H</u> elp	
?global YRS UM1 KS1 UM2 KS2 YPR KIN K1 K2	^
YRS=1.5;	
UM1=0.13;	
KS1=0.1;	
UM2=0.08;	
KS2=1;	
YPR=0.105;	
KIN=0.036;	
K1=0.045;	
K2=0.18;	
y0=[0.22,2.3,0.22];	
t0=1;	
tf=40;	
[t,y]=ode45('PHB',t0:1:tf,y0);	
plot(t,y);	
xlabel('time');ylabel('Concentration');	
gtext('\leftarrow R');gtext('\leftarrow S');	
gtext('\leftarrow P');	~
	>

PHB [Nomenclature]

- C_1 Concentration kg/m₃
- K_1 Inhibition constant, for $(NH_4)_2SO_4$ kg/m₃
- K_S Saturation constant kg/m₃
- n Hill coefficient –
- P Product concentration (PHB) kg/m₃
- Prot Protein concentration kg/m₃
- R Residual biomass(R=X-P) kg/m₃
- r Reaction rate $kg/(m_3h)$
- r_{P,red} Reduced rate of synthesis of PHB –
- S Limiting substrate NH_4 +as $(NH_4)_2SO_4$ kg/m₃
- X Biomass concentration kg/m₃
- $Y_{P/R}$ Yield coefficient kg/kg
- Y_{R/S} Yield coefficient kg/kg
- μ Specific rate of synthesis of R (r_R/R) 1/h
- μ_P Specific rate of synthesis of P (r_P/P) 1/h

PHB [Result]

Fig. 8. Plots of R, S and P versus T during batch growth and production.