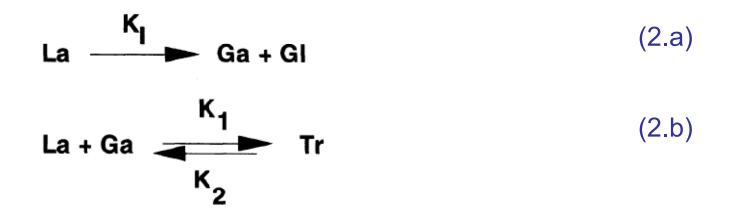

Oligosaccharide Production

Some enzyme catalyzed reactions are very complex. For this reason their rigorous modeling leads to complex kinetic equations with a large number of constants.


Such models are unwieldy and are usually not suitable for practical purposes. One approach to simplify them is to neglect formation of enzyme substrate complexes altogether and to deal only with overall reactions of the react ants to products.

An example of such a reaction is the enzymatic lactose hydrolysis, a complex process involving a multitude of sequential reactions leading to higher saccharide (oligosaccharides) intermediates. The mechanistic model is rather complex even when only trisaccharides are considered (Eq. 1a-c).

Oligosaccharide Production: System

Neglecting the enzyme complexes, however, gives a simplified model (Eq. 2a-b) requiring only three constants:

2

Oligosaccharide Production: Mass Balance

The simplified batch reactor model from Eq.2 is equivalent to the Michaelis-Menten product inhibition model:

Lactose
$$\frac{dLa}{dt} = -K_{I} \cdot La - K_{1} \cdot La \cdot G + K_{2} \cdot Tr$$
(3)
Galactose
$$\frac{dGa}{dt} = K_{I} \cdot La - K_{1} \cdot La \cdot G + K_{2} \cdot Tr$$
(4)
Trisaccaride
$$\frac{dTr}{dt} = K_{1} \cdot La \cdot G - K_{2} \cdot Tr$$
(5)
with initial conditions:
$$La_{0} = 150 \text{ mmol} / m^{3} \quad Ga_{0} = 0 \quad Tr_{0} = 0$$

Range of kinetic
$$K_{I} = 0.02 - 0.06 \text{ min}^{-1}$$
$$K_{1} = 0.02 - 0.1 L / \text{ mmol} \cdot \text{min} \quad K_{2} = 1 - 50 \text{ min}^{-1}$$

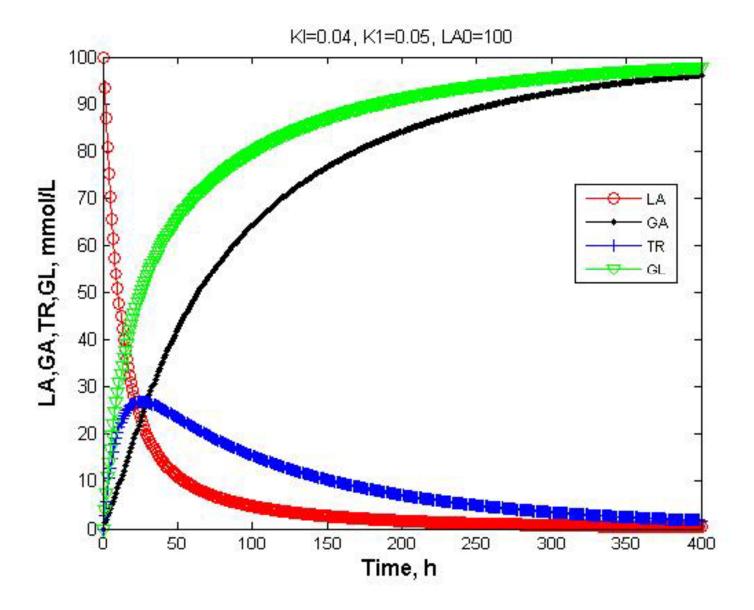
Oligosaccharide Production: Program

As first step in solving the problem with MATLAB is to write the function file. This file will be saved in the folder bin and the name of the file will later be required for processing in the Command Window of MATLAB

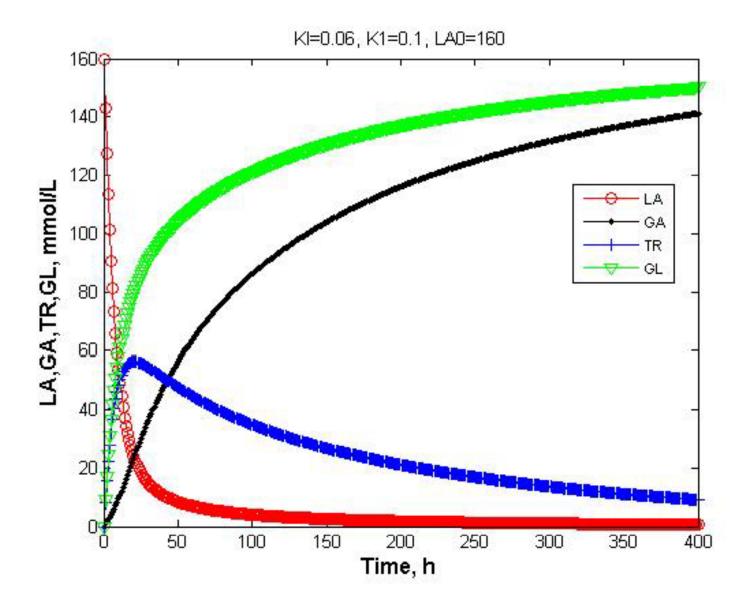
```
function dy = oligo func(t,y,KI,K1,K2)
2
      dy = zeros(4,1); % Column vector
3
      LA = \gamma(1);
                           % Lactose Concentration
      GA = y(2); & Galactose Concentration
      TR = \gamma(3); Trisacharid Concnetration
5
      % GL = y(4); % Glucose Concnetration
6
7
8
      dy(1) = -KI*y(1) - K1*y(1)*y(2) + K2*y(3);
9
      dy(2) = -K1*y(1)*y(2) + KI*y(1) + K2*y(3);
10
      dy(3) = -K2*y(3) + K1*y(1)*y(2);
11
      dy(4) = KI*y(1);
```

Oligosaccharide Production: Program

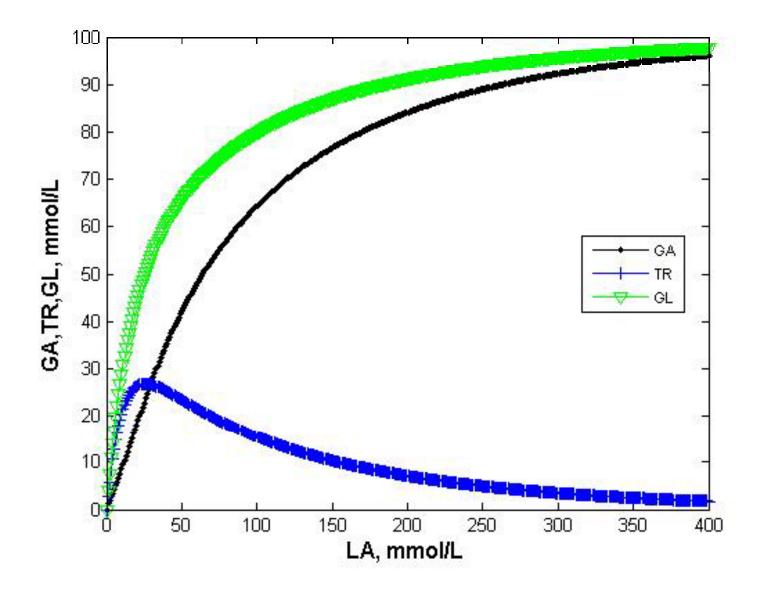
In this section the ODEs with initial condition values are solved and plotted in diagram.


	1 -	- KI = 0.04; K1 = 0.05; K2 = 1; % Re	action Rate Constants	
	2 -	- Tint = 1; Tfin = 400; % Ir	nitial and Final Temperature	
	3 -	- LAO = 100; % Ir	nitial Lactose Concentration	
	4 -	- GAO = 0; % Ir	nitial Galactose Concentration	
	5 -	- TRO = 0; % Ir	nitial Trisaccharid Concentration	
	6 -	- GLO = 0; % Ir	nitial Glucose Concentration	
	7 -	- Cinit = [LAO GAO TRO GLO]; % Ir	nitial concentration	
	8 -	- Tspan = linspace(0, Tfin, Tfin/Tint); % Ti	me span	
	9 -	- [T C] = ode45($@(t,y)$ oligo_func(t,y,KI,K1,K2	:), Tspan,Cinit); % Solve ODE	
1	.0 -	plot(T,C(:,1),'-ro',T,C(:,2),'-k.',T,C(:,3),'-b+',T,C(:,4),'-gv')		
1	1 -	title('KI=0.04, K1=0.05, LAO=100')		
1	2	% C(:,1):LA		
1	3	% C(:,2):GA		
1	4	% C(:,3):TR		
	5			
1	.6 -	- h = legend('LA','GA','TR','GL',0);		
1	7 -	<pre>set(h,'fontsize',8);</pre>		
1	8 -	<pre>xlabel('Time, h','fontsize',12,'fontweight','b');</pre>		
1	.9 -	ylabel('LA,GA,TR,GL, mmol/L','fontsize',12,'	<pre>fontweight','b');</pre>	

Oligosaccharide Production: Nomenclature


Symbol	Description	Unit
Ga	Galactose concentration	mmol/L
GI	Glucose concentration	mmol/L
K	Reaction rate constant La \rightarrow Ga + Gl	1/min
K ₁	Reaction rate constant La + Ga \rightarrow Tr	L/(mmol min)
K ₂	Reaction rate constant Tr \rightarrow La + Ga	1/min
La	Lactose concentration	mmol/L
Tr	Trisaccharide concentration	mmol/L

Index	Description	
0	Refers to initial concentration	


Oligosaccharide Production: Results

Oligosaccharide Production: Results

Oligosaccharide Production: Results

