

Simulation of CSTR by ODE's

Variables in CSTR Model

T _c	Cooling water temperature	(K)	
----------------	---------------------------	-----	--

- c_a Concentration of species A (mol/m³)
- T Reactor temperature
- q Volumetric flowrate (n^3/sec)
- V Reactor volume (n^3)
- ρ Density of A-B mixture (kg/m³)
- C_p Heat capacity of A-B mixture (J/kg-K)
- ΔH Heat of reaction for A->B (J/mol)

E/R	Activation energy in the Arrhenius
	Equation (J/mol) / Universal Gas
	Constant (8.31451 J/mol-K)
k _o	Pre-exponential factor (1/sec)
UA	Overall Heat Transfer Coefficient
	(W/m ² -K) * Area (m ²)
C_{af}	Feed Concentration (mol/m ³)

Feed Temperature (K)

 T_f

ODEs for concentration and temperature

• Equations in CSTR Model

Species balance for component A:

$$V\frac{\partial c_a}{\partial t} = q\left(C_{af} - C_a\right) - k_0 \exp\left(-\frac{E}{RT}\right) VC_a$$

Energy balance:

$$A = \Delta H k_0 \exp\left(-\frac{E}{RT}\right) V C_a$$
$$B = U A \left(T_c - T\right)$$
$$\rho C_p V \frac{\partial T}{\partial t} = \rho C_p q \left(T_f - T\right) + A + B$$

Matlab Function Program

```
function xdot=cstr1(t,x)
global u
% T of cooling jacket (K)
Tc = u;
% Conc in CSTR (mol/m^3)
Ca = x(1,1);
% Temperature in CSTR (K)
T = x(2,1);
% Flowrate (m^3/sec)
q = 100;
% Volume of CSTR (m^3)
V = 100;
% Density (kq/m^3)
rho = 1000;
% Heat capacity of A-B
Mixture (J/kq-K)
Cp = .239;
% Heat of reaction for A->B
(J/mol)
```

mdelH = 5e4;% E = Arrhenius Equation (J/mol) % R = Univ Gas Constant EoverR = 8750;% Pre-exponential factor (1/sec) k0 = 7.2e10;% U - Heat Trans Coeff (W/m^2-K) % A - Area (m^2) UA = 5e4;% Feed Conc (mol/m^3) Caf = 1;% Feed Temperature (K) Tf = 350;% Compute xdot: $xdot(1,1) = (q/V^*(Caf - Ca))$ - k0*exp(-EoverR/T)*Ca); $xdot(2,1) = (q/V^*(Tf - T) +$ mdelH/(rho*Cp)*k0*exp(-EoverR/T)*Ca + UA/V/rho/Cp*(Tc-T));

Matlab Main Program

```
% Step test for Model 1
CSTR
global u
% Initial Conditions-States
Ca_ss = 0.87725294608097;
T_ss = 324.475443431599;
x_ss = [Ca_ss;T_ss];
% Initial Condition-Control
u_ss = 300;
% Open Loop Step Change
u = 290;
```

```
% Final Time (sec)
tf = 5;
```

```
[t,x] = ode15s('cstr1',[0
tf],x_ss);
```

```
% Parse out the state
values
Ca = x(:,1);
T = x(:,2);
```

```
% Plot the results
figure(1);
plot(t,Ca);
```

```
figure(2)
plot(t,T);
```

Results and Discussion

📣 MATLAB Command Window

File Edit Window Help

To get started, type one of these commands: helpwin, helpdesk, or demo. For information on all of the MathWorks products, type tour.

» step

>>

Summary

- These model equations were solved by MATLAB numerical integrator. In this case ODE15s was used to solve the differential equations over a 5 second period. The jacket temperature was dropped from 300 K to 290 K. The cooling of the reactor jacket results in a decrease in reactor temperature and an increase in the concentration of species A.
- The results are displayed in two plots of the temperature and reactor concentration calculated by the program of step.m.