Chapter 7 Mixing and Granulation

7.1 Mixing and Segregation (Chapter 9)

Mixing vs. segregation

(1) Types of Mixture

* Perfect mixing Random mixing Segregating mixing

Figure 9.1

(2) Segregation

1) Causes and Consequences of Segregation

- Particles with the same physical property (size, density and shape) collect together in one part of the mixture.
- Usually it occurs during moving, pouring, conveying, processing
- Its degree depends on particle-particle interaction*
- * Free-flowing powder or coarse particles →segregating rather than mixing Cohesive powder or fine particles →mixing rather than segregating but easily aggregating

2) Mechanisms of Separation Figure 9-2

- Trajectory segregation

ρ μ From Chapter 3 in lecture note,

Stop distance
$$s = -\frac{p^{X^2}U}{18}$$

- Percolation of fine particles Figure 9.3
 - Rise of coarse particles on vibration Figure 9.4
- Elutriation segregation

3) Reduction of Segregation

p

μ

- Make the sizes of the components as close as possible

- Reduce the absolute size of the particles

< 30 m with density about $_{p} = 2000-3000$ kg/m³

Critical diameter lowered as the density increases.

- Use of interparticulate forces
 - Add a small amount of liquid (Use of liquid-bridge force)

- Make one of the components very fine (less than 5 m)

Ordered mixing*

Figure 9.5

- Avoid to promote the segregation

- Use continuous mixing for very segregating materials

4) Equipment for Particulate Mixing

- Mechanisms of Mixing and Types of Mixer (9.5.1 and 9.5.2)

Diffusive mixing	 Random walk phenomenon Essential for microscopic homogenization Not suitable for segregating particles 	Tumbling mixers, Figure 9.6			
Shear mixing	 Induced by the momentum exchange of powders having different velocities Semi-microscopic mixing 	High-velocity rotating blade Low velocity-high compression rollers.			
Convective mixing	 Circulation of powders by rotating blades Beneficial for batch mode, not for continuous mixing Suitable for segregating particles 	Ribbon blender, Figures 9.7,9.8 Fluidized-bed mixer			

* Ordered mixture by dry impact blending method

5) Assessing the Mixture

For Binary mixture(2 components) If $y_i(i=1,2,...,N)$: composition of the key component in the *i*-th sample, <u>Sample mean</u>

$$\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

* True mean?

<u>Standard deviation,</u> (standard variance, ²)

- Estimated standard variance(S^2)

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - \overline{y})^{2}$$

- Theoretical Limits of variance

Upper limit: true standard deviation for a completely unmixed system,

0

 $p_0^2 = p(1-p)$

Lower limit: true standard deviation of random binary mixture, r

$${}_{R}^{2} = \frac{p(1-p)}{n}$$

where p, 1-p: fractions of two components in the whole mixture

Degree of Mixing (Mixing indices)

The ratio of mixing achieved to mixing possible

Lacey :
$$\frac{2}{0} = \frac{2}{2}$$
Poole :
$$-\frac{r}{r}$$

Worked Example 9.1, 9.2, 9.3

7.2 Size Enlargement - Granulation (Chapter 11)

* Size enlargement - agglomeration of particles

σ

σ

σ

σ

σ

σ σ

σ σ

cf. coagulation

- * Why enlarge the particles?
 - To reduce dust hazard
 - To reduce cake and lump formation
 - To increase flow properties
 - To increase bulk density for storage
 - To increase nonsegregating mixtures
 - To provide defined metered quantity of active ingredients
 - To control surface-to-volume ratio
- * How enlarge the particles?
 - Granulation: agglomeration by agitation (relative motion of particles)
 - Machine granulation :compaction(tabletting), extrusion
 - Sintering: thermal, final densification
 - Spray drying: starting from droplets followed by its drying
 - Prilling (freeze drying)

(1) Interparticle Forces (11.2)

1) Van der Waals Forces

- Between two spheres

$$W = -\frac{A}{12z} \frac{x_1 x_2}{x_1 + x_2}$$

where A : Hamaker constant

z : separation

2) Forces due to Adsorbed Liquid Layers

- Overlapping of adsorbed layers
- Dependent on area of contact and tensile strength of the adsorbed layers

3) Forces due to Liquid Bridges

For pendular state Figure 11.1

$$F=2 r_2 + r_2^2 \left[\frac{1}{r_1} - \frac{1}{r_2}\right]$$

* Strong granules in which the quantity of liquid is not critical...

* Granule strength continuously decreases in funicular, capillary and droplet states.

4) Electrostatic Forces

Ą

* Contact electrification:

- Friction caused by interparticle collision \rightarrow Transfer of electrons between bodies

5) Solid bridges

- Crystalline bridges
- Liquid binder bridges

- Solid binder bridges

6) Comparison and Interaction between Forces

- Humidity vs. van der Waals forces, interparticle friction, liquid bridges and electrostatic forces

Figure 11.2 Tensile strength for various bonding mechanisms

(2) Granulation (11.3)

- Agitation: distribute liquid binder and impart energy to particles and granules for relative motion to meet together...

1) Granulation Rate Process (11.3.2)

- i) Wetting
- Rate of penetration of liquid

$$\frac{dz}{dt} = \frac{R_p \cos \theta}{4 z}$$

Washburn equation

where R_p : average pore radius, depending on particle size and packing density respacking.

: viscosity of liquid, depending on the binder concentration

θ

μ

ii) Growth Figure 11.3

: dynamic contact angle

- Nucleation shatter
- Coalescence breakage
- Layering attrition
- Abrasive transfer

Define $Stk = \frac{gr V_{app} x}{16}$ Box on p274 Ennis and Litster(1997)

$$Stk^* = \left(1 + \frac{1}{e}\right) \ln\left(\frac{h}{h_a}\right)$$

where *e* : coefficient of restitution *h_a*: surface roughness of granules

- Noninertial regime: Stk < Stk *
 - · all collisions effective for coalescence
 - · rate of wetting controls
 - independent of liquid viscosity, granule size and kinetic energy of collision
- Inertial regime: some Stk exceeds Stk*
 - · the proportion of successful collision decreases
 - · dependent on viscosity, granule size and kinetic energy
- Coating regime: average Stk exceeds Stk*
 - · granule growth is balanced by breakage
 - · growth continues by coating of primary particles onto existing granules

- iii) Granule consolidation
- increase in granule density by closer packing density
- squeeze out liquid

2) Simulation of Granule Growth (11.3.3)

Rate of increase of number of grapulos	=	Rate of inflow of granules in size	Rate of outflow of + granules	+	Rate at which granules enter size	Rate at which granules leave size		
in size interval v to v+dv		to v+dv		interval v to v+dv		to v+dv by growth		to v+dv by breakage

$$\begin{split} \frac{\partial n(v,t)}{\partial t} &= \frac{Q_{in}}{V} n_{in}(v) - \frac{Q_{out}}{V} n_{out(v)} + \frac{\partial G(v)n(v,t)}{\partial v} + B_{nuc}(v) \\ &+ \frac{1}{2} \int_{0}^{v} \beta(u,v-u,t)n(u,t)n(v-u,t)du - \int_{0}^{\infty} \beta(u,v,t)n(u,t)n(v,t)du \\ &- \frac{\partial A(v)n(v,t)}{\partial v} \end{split}$$

3) Granulation Equipments (11.3.4) Table 11.1

- Tumbling granulator Figure 11.4
 - · Tumbling inclined drum and pan
 - · Operate in continuous mode
- Mixer granulator
 - · Rotating agitator
 - · From 50 rpm(horizontal pug mixer-fertilizer) to 3000 rpm(vertical
 - Schugi high shear continuous granulator-detergent, agricultural chemicals)

- Fluidized bed granulators

- Bubbling or spouted bed Figure 11.5
- · Operate in batch or continuous mode
- · Good heat and mass transfer
- Mechanical simplicity
- · Combine drying stage with granulation
- · Produce small granules
- · Running cost and attrition rates : higher