Chapter 7 Mixing and Granulation

7.1 Mixing and Segregation (Chapter 9)

Mixing vs. segregation

(1) Types of Mixture

 ** Perfect mixing Random mixing Segregating mixing*

Figure 9.1

(2) Segregation

1) Causes and Consequences of Segregation

- *Particles with the same physical property (size, density and shape) collect together in one part of the mixture. - Usually it occurs during moving, pouring, conveying, processing*
-
- *Its degree depends on particle-particle interaction**
- ** Free-flowing powder or coarse particles*→*segregating rather than mixing Cohesive powder or fine particles*→*mixing rather than segregating but easily aggregating*

2) Mechanisms of Separation Figure 9-2

- Trajectory segregation

From Chapter 3 in lecture note,

$$
\text{Stop distance} \quad s = \frac{R}{18} \frac{x^2 U}{18}
$$

- *Percolation of fine particles Figure 9.3 Rise of coarse particles on vibration - Figure 9.4*
- *Elutriation segregation*

3) Reduction of Segregation

- Make the sizes of the components as close as possible

- Reduce the absolute size of the particles

μρ *< 30* ^m *with density about* p*= 2000-3000kg/m³*

 Critical diameter lowered as the density increases.

- Use of interparticulate forces

Add a small amount of liquid (Use of liquid-bridge force)

μ *- Make one of the components very fine (less than 5* ^m *)*

 *Ordered mixing**

Figure 9.5

- Avoid to promote the segregation

- Use continuous mixing for very segregating materials

4) Equipment for Particulate Mixing

- Mechanisms of Mixing and Types of Mixer (9.5.1 and 9.5.2)

** Ordered mixture by dry impact blending method*

5) Assessing the Mixture

For Binary mixture(2 components) If yi(i=1,2,……*N): composition of the key component in the i-th sample, Sample mean*

$$
\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i
$$

** True mean?*

σ *Standard deviation, (standard variance,* ² *)*

- Estimated standard variance(^S ² *)*

$$
S^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \overline{y})^2
$$

- Theoretical Limits of variance

σ *Upper limit: true standard deviation for a completely unmixed system,* ⁰

 $_0^2 = p(1-p)$

σ *Lower limit: true standard deviation of random binary mixture,* ^r

$$
P_R^2 = \frac{p(1-p)}{n}
$$

where p , $1 - p$ *: fractions of two components in the whole mixture*

Degree of Mixing (Mixing indices)

 The ratio of mixing achieved to mixing possible

$$
Lacey: \frac{\frac{2}{0}-\frac{2}{x}}{\frac{2}{0}-\frac{2}{x}}
$$
\n
$$
Pooke: -\frac{1}{x}
$$

Worked Example 9.1, 9.2, 9.3

7.2 Size Enlargement - Granulation (Chapter 11)

** Size enlargement - agglomeration of particles*

σ

σ

σ

σ

σ

cf. coagulation

- ** Why enlarge the particles?*
	- *To reduce dust hazard*
	- *To reduce cake and lump formation*
	- *To increase flow properties*
	- *To increase bulk density for storage*
	- *To increase nonsegregating mixtures*
	- *To provide defined metered quantity of active ingredients*
	- *To control surface-to-volume ratio*
- ** How enlarge the particles?*
	- *Granulation: agglomeration by agitation (relative motion of particles)*
	- *Machine granulation :compaction(tabletting), extrusion*
	-
	- *Sintering: thermal, final densification Spray drying: starting from droplets followed by its drying Prilling (freeze drying)*
	-

(1) Interparticle Forces (11.2)

1) Van der Waals Forces

- Between two spheres

$$
W = -\frac{A}{12z} \frac{x_1 x_2}{x_1 + x_2}
$$

where ^A *: Hamaker constant*

 : separation

2) Forces due to Adsorbed Liquid Layers

- *Overlapping of adsorbed layers*
- *Dependent on area of contact and tensile strength of the adsorbed layers*

3) Forces due to Liquid Bridges

For pendular state Figure 11.1

$$
F=2 r_2 + r_2^2 \left[\frac{1}{r_1} - \frac{1}{r_2}\right]
$$

** Strong granules in which the quantity of liquid is not critical...*

** Granule strength continuously decreases in funicular, capillary and droplet states.*

4) Electrostatic Forces

** Contact electrification:*

- Friction caused by interparticle collision [→] *Transfer of electrons between bodies*

- *5) Solid bridges Crystalline bridges*
- *Liquid binder bridges Solid binder bridges*

6) Comparison and Interaction between Forces

- Humidity vs. van der Waals forces, interparticle friction, liquid bridges and electrostatic forces

Figure 11.2 Tensile strength for various bonding mechanisms

(2) Granulation (11.3)

- Agitation: distribute liquid binder and impart energy to particles and granules for relative motion to meet together...

1) Granulation Rate Process (11.3.2)

- *i) Wetting*
- *Rate of penetration of liquid*

$$
\frac{dz}{dt} = \frac{R_p \cos}{4 z}
$$

Washburn equation

where R_p ^{*i*} average pore radius, depending on particle size and packing *density* ☞ *packing..*

- θ *: dynamic contact angle*
- μ *: viscosity of liquid, depending on the binder concentration*
	- *ii) Growth Figure 11.3*
	- *Nucleation shatter*
	- *Coalescence breakage*
	- *Layering attrition*
	- *Abrasive transfer*

 p

μ Define **Stk≡** - <u>st^V_{app}x</u> a≡Box on p274 Ennis and Litster(1997)

$$
Stk^* = \left(1 + \frac{1}{e}\right) \ln\left(\frac{h}{h_a}\right)
$$

where ^e *: coefficient of restitution h*_{*a}:* surface roughness of granules</sub>

- *Noninertial regime:* $Stk \leftarrow Stk *$
	- ․ *all collisions effective for coalescence*
	- ․ *rate of wetting controls*
	- ․ *independent of liquid viscosity, granule size and kinetic energy of collision*
- *Inertial regime: some* Stk *exceeds* Stk *
	- ․ *the proportion of successful collision decreases*
	- ․ *dependent on viscosity, granule size and kinetic energy*
- *Coating regime: average* Stk *exceeds* Stk *
	- ․ *granule growth is balanced by breakage*
	- ․ *growth continues by coating of primary particles onto existing granules*
-
- *iii) Granule consolidation increase in granule density by closer packing density*
- *squeeze out liquid*

2) Simulation of Granule Growth (11.3.3)

$$
(11.7) \t(11.8) \t(11.9) + (11.10) + (11.11)
$$

interval v
\nto v+dv
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 0\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 1 \\
 & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 1 \\
 & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
 & \text{for } v \neq 1\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n & \text{for } v \neq 0 \\
$$

3) Granulation Equipments (11.3.4) Table 11.1

- *Tumbling granulator Figure 11.4*
	- ․ *Tumbling inclined drum and pan*
	- ․ *Operate in continuous mode*

- Mixer granulator

․ *Rotating agitator*

- ․ *From 50 rpm(horizontal pug mixer-fertilizer) to 3000 rpm(vertical*
- *Schugi high shear continuous granulator-detergent, agricultural chemicals)*

- Fluidized bed granulators

- ․ *Bubbling or spouted bed Figure 11.5*
- ․ *Operate in batch or continuous mode*
- ․ *Good heat and mass transfer*
- ․ *Mechanical simplicity*
- ․ *Combine drying stage with granulation*
- ․ *Produce small granules*
- ․ *Running cost and attrition rates : higher*