Chapter 6 Storage and Flow of Powders - Hopper Design (Chapter 8)

shttp://www.dietmar-schulze.de/storage.html

6.1 Introduction

Storage tanks

Silos : section of constant cross sectional area

- Bins : H > 1.5 D

- Bunker : H < 1.5 D

Hopper : section of reducing cross sectional area downwards

(a) conical and axisymmetric hopper;(b) plane-flow wedge hopper;(c) plane flow chisel hopper;(d)pyramid hopper

6.2 Mass Flow vs. Core(Funnel) Flow

Mass flow vs. core flow : Figure 8.1 Figure 8.2 Figure 8.3 To see the mass flow in hopper 🖙

http://www.cco.caltech.edu/~granflow/movies.html

Mass flow	Core flow	
Characteristics		
No stagnant	Stagnant zone formation	
Uses full cross-section of vessel	Flow occurs within a portion of vessel cross-section	
First-in, first-out flow	First-in, last-out flow	
Advantages		
Minimises segregation, agglomeration of materials during discharge	Small stress on vessel walls during flow due to the 'buffer effect' of stagnant zones	
	Very low particle velocities close to vessel walls; reduced particle attrition and wall wear	
Disadvantages	-	
Large stresses on vessel walls during flow	Promotes segregation and agglomeration during flow	
Attrition of particles and erosion and	Discharge rate less predictable as flow	
wear of vessel wall surface due to high particle velocities	region boundary can alter with time.	
Small storage volume to vessel height		
ratio		

Table Comparison of mass flow and core flow of particulate materials.

6.2S Stresses in Bulk Solids

(1) Mohr Stress Circle

Two dimensional stresses in the powder bed

- Normal stress,

σ

τ

- Shear(tangential) Stress,

분체층은 정지되어 있어도 유체와는 달리 - 수직응력(유체에서 보통 압력으로 부름)이외에 전단력이 존재하고, - 수직응력과 전단응력은 면의 배향에 따라서도 달라진다. - Principal stresses (major, minor), 1, 2 : normal stresses to the plane in which shear stresses vanish where 1 ± 2 면의 배향에 따라서는 전단응력이 없어지는 경우가 두 개 생기며 이 두면은 서로 수직하고, 하나는 최대, 다른 하나는 최소 응력을 가진 다.

Correlating and , in terms of principal stresses

From force balances,

σ

σ

σ

đ

Ø

α

σ

a

α

σ

σ

 $_1 \cos = \cos + \sin$

 $(1) \times \cos + (2) \times \sin$

$$_{1}\cos^{2} + _{2}\sin^{2} =$$

 $_2 \sin = \sin - \cos \theta$

 σ_1

α

 σ_2

(1)

(2)

 $(1)^{2} + (2)^{2}$

 ${}^{2}_{1}\cos^{2} + {}^{2}_{2}\sin^{2} = {}^{2} + {}^{2}$

Eliminating sin and cos

$$\left(-\frac{1+2}{2} \right)^2 + 2 = \left(-\frac{1-2}{2} \right)^2$$

Mohr Stress Circle

6.4 Shear Cell Tests - Yield Behavior of Bulk Powder

Powder Bed :

- Fixed : Adsorption beds, catalyst beds, packed beds for absorber

- Moving : Feeding in storage tank

Jenike shear cell

Jenike yield locus

ρ

σ

ø

σ

σ

ρ

*Construction method

- Put the powder sample of $_B$ in the cell.

- Note the horizontal stress() to initiate flow for the given normal stress(). (must be low enough for $_B$ to decrease during application of)
- Repeat this procedure for each identical powder sample($_B$) with greater until $_B$ does not decrease. Five or six pairs of (,) should be generated.
- Particle bed is about to move on the Janike yield locus for given $_B$.

Janike yield locus

* Definition

- Expanded flow(at the points up to E on the curve)
- Free flow (at point E): critical flow
- Cohesion
- Tensile strength

6.5 Analysis of Shear Cell Test Results

(1) JYL vs. Mohr stress circle

Normal stress, σ

All the Mohr circles exist below JYL ...

(2) Determination of δ from Shear Cell Tests

* Effective Yield Locus

ρ

σ

6

- Tangent line of the Mohr circles passing E's (end points) of JYL's for different _B's is straight...
- From its slope, the effective internal angle of friction is obtained by

.: = tan

Normal stress, σ

Worked Example 8.1(a)

Ex.8.4, 8.5

* For free flowing powder

* Angle of Repose, (安息角)

α

ф

For noncohesive(free-flowing) particles

Angle of repose, α , of (a) a pile of powder, (b) powder in a container, and (c) powder in a rolling drum.

Wall Yield Locus

- Similarly yield locus of powder bed against wall can be found from wall shear test... Figure 8.16
- Straight line passing the origin....

wtan W

6.3 Design Philosophy

Arching

ф

σ

σ

Arch - free surface, no flow e.g. a salt shaker (a salt pourer?)

(1) Determination of σ_{y} and σ_{c}

- Two limiting Mohr circles for arch formation

_C: Compacting(consolidating) stress

(3) Flow-nonflow condition (for breaking arch) For flow

 $_{D}$ > $_{y}$

where σ_D : actual stress of the powder developed under hopper condition

(4) Critical Outlet Diameter

To avoid the formation of arch...

Langmaid

σ

$$\frac{S}{x_{sv}} = 1.8 + 0.038 \left(\frac{\phi_s}{\phi_v}\right)^{1.8}$$
$$\frac{D_c}{x_{sv}} = 2.3 + 0.071 \left(\frac{\phi_s}{\phi_v}\right)^{1.8}$$

where S: critical slit width and D_c : critical orifice diameter ϕ_s : specific surface area shape coefficient

$$\phi_s = \frac{S}{x_v^2}$$

 ϕ_v : specific volume shape coefficient

$$\phi_v = \frac{V}{x_v^3}$$

For spheres, since $\frac{\phi_s}{\phi_v} = 6$

$$\frac{S}{x_{sv}} = 2.8 \quad and \quad \frac{D_c}{x_{sv}} = 4.1$$

For crushed particles, $\frac{\phi_s}{\phi_v} = 10$

$$\frac{S}{x_{sv}} = 4.2$$
 and $\frac{D_c}{x_{sv}} = 6.8$

Pokrovski

$$\frac{D_c}{x_{sv}} = \frac{2\mu_i^2}{1 - \mu_i^2} \left(0.5 + \frac{1 - \mu_i}{\sqrt{(1 + \mu_i^2)}} \right)$$

where μ_i : internal friction coefficient

Example

식탁소금병의 구멍크기를 설계하여라. 소금의 크기는 0.6 imes 0.5 imes 0.4mm 직육면체라고 한다.

$$\begin{aligned} & \bigvee_{x} := 0.6\text{mm} \cdot 0.5\text{mm} \cdot 0.4\text{mm} \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$$

6.8 Pressure on the Base of a Tall Cylindrical Bin - Stresses in the Storage Tank

Vertical stress, _v

σ

Δ

Ā

Þ

â

Φ ρ

- In the cylindrical bins

Force balance on a slice of thickness H in the powder bed,

$$\frac{D^2}{4} \qquad _v + D \tan \qquad _{w h} H = \frac{D^2}{4} \qquad _{B}g H$$
$$D \qquad _v + 4 \tan \qquad _{w h} H = D \qquad _{B}g H$$

Assumi

ing
$$_{H} = k_{v}$$
 and $H \rightarrow 0$

$$\frac{d}{dH} + \left(\frac{4\tan wk}{D}\right) = Bg$$

Integrating

$$\Phi = \frac{D_{B}g}{4\tan w^{kH/D}} [1 - e^{-4\tan w^{kH/D}}] + e^{-4\tan w^{kH/D}}$$

When no force acting on the free surface of the powder $_{v0} = 0$,

$$v = \frac{D_{B}g}{4\tan w^{kH/D}} [1 - e^{-4\tan w^{kH/D}}]$$

Janssen equation

For small H,

 $_{v} \cong _{B} Hg$

(liquid-like)

For large H(>4D)

$$_{v} \cong \frac{D_{B}g}{4\tan w^{k}}$$

independent of H and $_{v0}$

Figure 8.21

Example

σ

₽ ₽

σ

ρ Φ

σ

직경 2m, 높이 10m의 원형 bin에 충비중 0.80ton/m³, 내부마찰각 30°의 분체를 채울 때 바닥에 미치는 수직압력과 수평압력을 구하여라. 벽마찰계수는 0.4라고 한다.

$$D := 2m \qquad H_{m} := 10m \qquad \rho_{-}B := 800 \frac{kg}{m}$$
phi := 30deg
$$\mu := 0.4$$

$$K_{m} := \frac{1 - \sin(phi)}{1 + \sin(phi)}$$

$$\sigma_{-}V := \frac{D \cdot \rho_{-}B \cdot g}{4\mu \cdot K} \left(1 - \exp\left(\frac{-4\mu \cdot K \cdot H}{D}\right)\right) + \sigma_{-}V = 2.738 \times 10^{4} Pa$$

$$\sigma_{-}h := \sigma_{-}V \cdot K$$

$$\sigma_{-}h := 9.125 \times 10^{3} Pa$$

- In hopper

For $C' \neq 1$,

$$_{v,2} = \frac{Bgh}{C-1} \left\{ 1 - \left(\frac{h}{H_2}\right)^{C-1} \right\} + \left(\frac{h}{H_2}\right)^C$$

For C'=1

ρ σ

$$_{v,2} = _{B}h\ln\left(\frac{H_{2}}{h}\right) + _{0}\left(\frac{h}{H_{2}}\right)$$

where
$$C' \equiv 2 \tan_{W} \cot_{1} (K \cos^{2}_{1} + \sin^{2}_{1})$$

Wall stress distribution in silo-hopper

Storage tank내의 압력은 저장 중에는 위의 정압과 일치하나 feeding과 discharge시에는 달라진다.

6.9 Mass Flow (Discharge) Rate

For cylindrical and conical hoppers Beverloo(1961) Dimensional analysis

ρ

π ρ

$$M_p = C_B g^{1/2} (B_0 - kx)^{5/2}$$

where $C : 0.55 \sim 0.65$

k: 1.5 or somewhat larger depending on

particle shape

- Independent of H, D

For cohesionless coarse particles

$$M_p = -\frac{1}{4}\sqrt{2} \ _B g^{0.5} h^{0.5} B^2$$

Other empirical equations

神	摘要	統一単位で表わした重量流出速度(ton/hr)の式	主な実験 粉 体	範囲 粒子径 D _p	実験 オリフィス 径D。(mm)	発表年	研究者
0	開き角20~110°0 ホッパー用	$W = \frac{6\rho_B D_o^{2.5} \times 10^{-3}}{\mu(34.6 + (67.4 + 444 \sin{(\phi/2)}) (D_{\phi}/D_o) + 0.130 - 0.161))}$	肥料, ガラ ス球, 種子 鉛弾など	13.5~0.131 mm	73~1	1929	Deming ⁶⁾
1	水平円形オリフ	$W = \frac{1.14\rho_B D_o^{2.5} + 10^{-5}}{(0.3\mu^{3.5} + 0.56(D_p/D_o))}$	砂, 鉛弾, 種子金米糖	1. 1~0. 04 mm	40~1	1933	高 侨"
1	水平円形オリフ	$W=1.54\rho_B D_o^{2.5} \times 10^{-4}$	砂	D A A	40~1.7	1939	Линчевскии ⁸⁾
さび	水平円形オリフ ス (C _o =1) およて ホッパー用	$W=0.64\rho_B(C_wC_o/\sqrt{\tan\theta_r})D_p^{-0.2}D_o^{2.7}+10^{-4}$	鋼球,砂, ガラス球, 種子	15~0. 127 mm	1.6~50	1948	Rausch ⁹⁾
1	水平円形オリフィス	$W=1.19\rho_B\mu^{-0.5}D_o^{2.5}+10^{-4}$	白土,砂, 石英粒	30~150 mesh	9~2.3	1952	白 井10)
イリ	水平円形オリフ ス,傾斜円形オリ フィス	$W = \frac{1.321 \rho_p D_o^{2.93} \times 10^{-4}}{\left[(6,288 \mu_i + 23.16) \left[(D_p/25.4) + 1.889 \right] - 44.9 \right]}$	砂, ガラス 球	5. 1~0. 76 mm	58~6	1955	Franklin ²⁾
~	D_o/D_p >10 ホッ 一用10> D_o/D_p > 4.35	$ \begin{array}{l} W{=}0.\ 642 \rho_B D_{\rho}^{-0.2} \left[\mu \tan \left(\phi/2 \right) \right]^{-0.32} D_{\rho}^{2.7} {\times} 10^{-4} \\ W{=}0.\ 356 \rho_B D_{\rho}^{-0.5} \left[\mu \tan \left(\phi/2 \right) \right]^{-0.32} D_{\rho}^{3.0} {\times} 10^{-4} \end{array} $	砂, 鋼球, 砂糖	2~0. 15 mm	-	1956	田中11)
のを	水平の各種形状の オリフィスの式を 示している	$W=0.935\rho_B D_{\rho_T}^{-0.185} D_o^{-2.685} \times 10^{-4}$ (円形オリフィス)	砂, 種子, 砂糖	3 mm~ 50mesh	50~13	1959	Fowler ¹²⁾
1	水平円形オリフィス	$W=1.92\rho_B\sqrt{D_o} (D_o^2-3.84D_oD_{\rho}+6.66D_{\rho}^2)\times 10^{-4}$	19 x 1	7~1mm	25.3~1.7	1960	лукь я нов ¹³⁾
1	水平円形オリフ	$W=2.08\rho_B(D_o-1.4D_p)^{2.5}\times 10^{-4}$	砂, 種子	1.6~0.4 mm	30~2	1961	Beverloo ¹⁴⁾

W: Mass flow rate(ton/hr); ϕ :hopper angle(°); D_o :orifice diameter(mm); $\mu = \tan \theta_r$; D_p : equivalent volume diameter(mm); $\mu_i = \tan \phi_i$; ρ_B : bed density(\tan/m^3); ϕ_i : internal friction angle(°); θ_r : repose angle(°); C_o : correction factor for $\frac{D_p}{D_o}$ and hopper angle; C_W : correction factor for $\frac{D_p}{D_o}$ and wall effect...

- Be careful for application!