4.1 Fluid Flow through Packed Bed of Particles (Chapter 4)

(1) Pressure Drop - Flow Relationship

1) Laminar Flow

Fluid flow through a packed bed: simulated by fluid flow through a hypothetical tubes

Ц

A 3

Å 3

ρ

μ

ρ

μ

 $\therefore \frac{(-p)}{H} = \frac{32}{D^2} U$

 $\Rightarrow \frac{(-p)}{H_e} = \frac{K_1 U_i}{D_e^2}$

Substituting suitable relations for H_e (equivalent height) and D_e (equivalent diameter)

$$\therefore \frac{(-p)}{H} = 180 \frac{U}{x^2} \frac{(1-)^2}{3}$$

Carman-Kozeny equation

2) General Equation for Turbulent and Laminar Flow

Ergun equation

$$\frac{(-p)}{H} = 150 \frac{U}{x^2} \frac{(1-)^2}{3} + 1.75 \frac{t^2}{x} \frac{(1-)^3}{3}$$

Turbulent Laminar

Laminar flow for
$$Re * = \frac{xU_{f}}{(1-)} < 10$$

Turbulent flow for
$$Re * = \frac{XU_f}{(1-)} > 2000$$

or

$$f* = \frac{150}{Re*} + 1.75$$

where
$$f * \equiv \frac{(-p)}{H} - \frac{x}{{}_{f}U^{2}} - \frac{3}{(1-p)}$$

Friction factor Figure 4.1

3) Nonspherical Particles

 x_{sv} (surface-volume diameter) instead of x

Worked Example 4.1

(2) (Liquid) Filtration

(1) Introduction

Filter media : Canvas cloth, woolen cloth, metal cloth, glass, cloth, paper, synthetic fabrics

Filter aids : To avoid cake plugging

e.g. Diatomaceous silica, perlite, purified woolen cellulose, other inert porous solids

- By either adding slurry (increasing cake permeability) or precoating the filter media surface

1) Incompressible Cake

For cake filter

From laminar part of Ergun equation

$$\frac{(-p)}{H} = \frac{150 \ U(1-)^2}{x^{2-3}}$$

x : surface-volume diameter of particle

* For compressible filter cake,

$$\frac{dp}{dL} = r_c \ U$$

where r_c : a function of pressure difference

By defining cake resistance r_c

$$r_{c} = \frac{150(1-)^{2}}{x^{2-3}},$$
$$\frac{(-p)}{H} = r_{c} U$$
where $U = \frac{1}{A} \frac{dV}{dt}$

V: volume of slurry fed to filter

Also defining (volume formed by passage of unit volume filtrate)

$$=\frac{HA}{V},$$
$$\frac{dV}{dt} = \frac{A^2(-p)}{r_c V}$$

Including the resistance of filter medium,

since the resistances of the cake and the filter medium are in series,

$$(- p) = (- p_m) + (- p_c)$$

$$\downarrow$$

$$\frac{1}{A} \frac{dV}{dt} r_c H_c$$

By analogy for the filter medium

$$(- p_m) = \frac{1}{A} \frac{dV}{dt} r_m H_m$$

$$\therefore (- p) = \frac{1}{A} \frac{dV}{dt} (r_m H_m + r_c H_c)$$

Defining equivalent height of filter cake and volume of filtrate

μ

3 3

Δ

φ

φ

Δ

₽

Δ

μ

μ

μ

$$\Phi \qquad r_m H_m = r_c H_{eq} \text{ and } H_{eq} = \frac{V_{eq}}{A}$$

$$V_{eq} = \frac{A}{\phi} \frac{r_m H_m}{r_c}$$

where V_{eq} : volume of filtrate passing to create a cake of thickness H_{eq}

$$\therefore \frac{1}{A} \frac{dV}{dt} = \frac{(-p)A}{r_c (V+V_{eq})}$$

Constant rate filtration

$$\frac{1}{A} \frac{dV}{dt} = \frac{(-p)A}{r_c (V+V_{eq})} = constant$$

Constant pressure filtration

Integrating

$$\frac{t}{V} = \frac{r_c}{A^2(-p)} \left(\frac{V}{2} + V_{eq}\right)$$

Worked Example 4.2

3) Washing the Cake

Figure 4.2

4.2 Fluidization (Chapter 5)

(1) Fundamental

* p vs. U Figure 5.1

Minimum (incipient) fluidization, U_{mf}

From force balance

Net downward force

$$p = (1 -)(p - g)H$$
 (1)

ß

Δ

∆ ⊉

∆ ¢

∲ ∆ Net upward force

$$\frac{p}{H} = 150 \frac{(1-1)^2}{3} \frac{U}{x_{sv}^2} + 1.75 \frac{1-1}{3} \frac{gU^2}{x_{sv}}$$
(2)

Equating (1) and (2) at $U = U_{mf}$

$$Ar = 150 \frac{(1-)}{3} Re_{mf} + 1.75 \frac{1}{3} Re_{mf}^2$$

where $Ar \equiv \frac{g X_{sv}^3 (p-f) g}{2}$, Archimedes number

$$Re_{mf} = - \frac{{}_{f}U_{mf}X_{sv}}{}$$

$$= 0.4$$
, usually

More practically,

ß

3

3 3

ρ μ

ρ μ

3

μ

μ

թ ր Wen and Yu(1966) for $x_{sv} > 100$ m

$$Ar = 1056 Re_{mf} + 159 Re_{mf}^{2}$$

Baeyens and Geldart(1974) for x < 100 m

$$U_{mf} = \frac{(p-f)^{0.934} g^{0.934} x^{1.8}}{1110^{-0.87} f}$$

* Densities of particles

- Absolute density: materials property

- Particle density: Figure 5.2

- Bed density

* Sieve diameter, x_p , $x_v = 1.13x_p$

mean
$$x_p = \frac{1}{\sum m_i / x_i}$$

(2) Bubbling and Non-Bubbling Fluidization (5.3)

Types of Fluidization

Various types of fluidized beds

- Bubbling fluidized bed : Figure 5.3 for Group B particles

- Liquid fluidization: Figure 5.4

Worked Example 5.1

(3) Classification of Powders (5.4)

Geldart(1974) Figure 5.6 Table 5.1

- Group A : Nonbubbling for $U_{mf} \leftarrow U \leftarrow U_{mb}$
- Group B : Bubbling for $U > U_{mf}$
 - No maximum in bubble size
- Group D : Spoutable
- Group C : Subject to channeling in large diameter-bed

(4) Applications of Fluidized Beds(5.8)

Advantages

- Liquid-like behavior, easy to control and automate
- Rapid mixing, uniform temperature and concentration
- Resists rapid temperature changes, hence responds slowly to changes in
- operating conditions and avoids temperature runaway with exothermic reactions
- Circulate solids between fluidized beds for heat exchange
- Applicable for large or small scale operations
- Heat and mass transfer rates are high, requiring smaller surfaces

Disadvantages

- Bubbling beds are difficult to predict and are less efficient
- Rapid mixing of solids causes nonuniform residence times for continuous flow reactors
- Particle comminution(breakup) is common
- Pipe and vessel walls erode to collisions by particles
- 1) Physical Processes

Drying / Mixing / Granulation / Coating / Heat exchanger/ Adsorption Figure 5.17

2) Chemical Processes Table 5.2

Figure 5.18 Fluidized catalytic cracker

4.3 Pneumatic Transport (Chapter 6)

(1) Pneumatic Transport

- Use of a gas to transport a particulate solid through pipeline

- Three major variables for pneumatic conveying
 - solid mass flow rate
 - gas mass flow rate
 - pressure gradient(pressure drop per unit length)

1) Dilute-Phase and Dense-Phase Transport

Dilute-Phase	Dense-Phase
High gas velocity (> 20 m/s)	Low-gas velocity (1-5 m/s)
Low solids concentration	High solids concentration
(< 1 % by volume)	(> 30 % by volume)
Low pressure drop (<5 mbar/m)	High pressure drop (> 20 mbar/m)
Short-route, continuous	Batch or semibatch transport
transport(< 10 ton/h)	
Capable under negative pressure	
Particles behave as individuals	
Fully suspended in gas	Not-fully suspended in gas
Fluid-particle : dominant	Much interaction between particles
	and between particle and wall

2) The Choking Velocity in Vertical Transport

Figure 6.1 - p/L vs. U (gas superficial velocity) at various solids flow flux G Static head of solids \rightarrow friction resistance

Choking velocity, U_{CH}

The lowest velocity at which the dilute-phase transport can operate at G given

Punwani et al (1976)

$$\frac{U_{CH}}{CH} - U_T = \frac{G}{p(1 - CH)}$$

$${}^{0.77}_{f} = \frac{2250D(-4.7)}{\left[\frac{U_{CH}}{CH} - U_T\right]^2}$$

3) Saltation Velocity in Horizontal Transport

Figure 6.2 - p/ L vs. U(gas superficial velocity) at various solids flow flux G

Saltation velocity, U_{SALT}

The gas velocity at which the solids to begin to settle out Boundary between dilute phase flow and dense phase flow

Rizk(1973)

$$\frac{M_p}{{}_{f}U_{SALT}A} = \left\{\frac{1}{10^{(1440x+1.96)}}\right\} \left\{\frac{U_{SALT}}{\sqrt{gD}}\right\}^{(1100x+2.5)} in SI$$

solid loading

Froude number at saltation

where M_p : particle mass flow rate

D : pipe diameter

Δ

Ø

3 Q

8

Δ

ρ

4) Fundamentals

Gas and particle velocity

Superficial velocity

$$U_{fs} = \frac{Q_f}{A}$$
 and $U_{fp} = \frac{Q_p}{A}$

Actual velocity

$$U_{f} = \frac{Q_{f}}{A} = \frac{U_{fs}}{A} \text{ and } U_{p} = \frac{Q_{p}}{A(1-)} = \frac{U_{ps}}{1-A}$$

* Slip velocity U_{slip}

$$U_{rel} = U_f - U_p \equiv U_{slip}$$

Continuity

Gas mass flow rate

 $M_f = A U_f \quad f$

Particle mass flow rate

$$M_p = A U_p (1 -)_p$$

Solid loading

$$\frac{M_p}{M_f} = \frac{U_p(1-)_p}{U_f}$$

ţ

Pressure drop

From Newton's 2nd law of motion Figure 6.3 Rate of momentum for flowing gas-solid mixture = Net force exerting on the mixture

p

3

Ø

Ø

p p

ø

 $p_1 - p_2 = \frac{1}{2} \int_{f} U_f^2 + \frac{1}{2} \int_{p} (1 -) U_p^2 + F_{fw}L + F_{pw}L$ $gas \quad solids \quad gas-wall \quad solids-wall \quad solids-wall \quad friction \quad fric$

$$f_{f}L$$
 gsin $f_{p}L(1)$ gsi
gas gravity solids gravity

5) Design for Dilute Phase Transport

Gas velocity

 $U_{f} \sim 1.5 U_{SALT}$ since $U_{SALT} > U_{CH}$

for systems comprising both vertical and horizontal lines $U_{\rm f} ~\sim~ 1.5 U_{\rm CH}$

for vertical line only

Table. Approximate air velocity for powder transport

Powder	U, m/s
Wheat, rice, plastic pellets	16 - 24
Grains, limestone powder	16 - 23
Soda ash, sugar	15 - 20
PVC powder	20 - 26
Carbon powder	18 - 24
Cement	18 - 28
Alumina powder	24 - 32
Sand	23 - 30

Pipeline pressure drop

 $F_{pw}L = 0.057 GL \sqrt{\frac{g}{D}} \qquad for \ vertical \ transport$ $F_{pw}L = \frac{2f_p(1-)}{D} \frac{U_p^2L}{D} = \frac{2f_pGU_pL}{D} \quad for \ horizontal \ transport$ $where \ U_p = U_f(1-0.0638 \ x^{0.3} \ \frac{0.5}{p}) \quad and$ $f_p = \frac{3}{8} - \frac{f}{p} C_D \frac{D}{d_p} \left(-\frac{U_f - U_p}{U_p} \right)$ $C_D: \ drag \ coefficient \ (fn \ of \ Re_p)$

<u>Bend</u>

p

ρ

թ թ

~ 7.5 m of vertical section pressure drop

* Downflow through vertical-to-horizontal bend :

- greater tendency for saltation
- avoided if possible.

- * Blinded tee bend : Figure 6.4 with respect to radius elbow
 - prolonging service life due to cushioning effect
 - with the same pressure drop and solid attrition rate

Worked Example 6.1

Equipment

Figure 6.5Positive pressure systemFigure 6.6Negative Pressure system

*	Centrifugal blowers(fan)	VS.	Positive	displacement	blower
low pressure		high pressure			
small amount of dust allowed		no dust is allowed		owed	

	Possible	Avoided by	
Blocking	at high concentration region(around solid feeder and bend	feeding at dispersed state sufficient acceleration length and adequate bend curvature	
Adhesion	with moisty, low-melting or electrically charged powder	adequate range of gas velocity	
Attrition	at bend	 low gas velocity higher solid load changing collision angle and bend material. 	

Some problems in pneumatic transport

6) Dense Phase Transport

Flow Patterns

- Horizontal - Figure 6.7

Saltating flow - unstable, bad flow pattern Discontinuous dense phase flow* Dune Flow / Discrete Plug Flow / Plug Flow* Continuous Dense Phase Flow - requires high pressure adequate for short-pipe transport

Equipment

Blow tanks : with fluidizing element (Figure 6.13) without fluidizing element (Figure 6.14) Plug formation : air knife (Figure 6.10) air valve (Figure 6.11) diaphragm (Figure 6.12) Plug break-up : bypass (Figure 6.8) pressure actuated valves (Figure 6.9)

Design and Operation

- Use of test facilities + past experience for pipe size, air flow rate and type of dense phase system
- Group A, D better than Group B, C for dense phase conveying
- Higher permeability: more suitable for plug flow type conveying
- Higher air retention: more suitable for dune mode flow

4.3 Flow of Liquid-Solid Suspension (Slurries)(Supplement)

Characteristics of hydraulic transport

Transition velocity

Durand(1953)

$$U_{tr} = 11.9 (U_T D)^{1/2} x^{1/4}$$

where D: pipe diameter

Critical(saltation) velocity

ρ

3

p

Durand(1953)

$$U_c = F_L [2gD(p/f-1)]^{1/2}$$

where
$$F_L$$
: function of x and

Hanks (1980)

$$U_c = 3.12(1-)^{0.186} \left(\frac{X}{D}\right)^{1/6} [2gD(p/f-1)]^{1/2}$$