4.1 Fluid Flow through Packed Bed of Particles (Chapter 4)

(1) Pressure Drop - Flow Relationship

1) Laminar Flow

Fluid flow through a packed bed: simulated by fluid flow through a hypothetical tubes

$$
\mathbf{v}^{\prime}
$$

ε

ε

 $\therefore \frac{(-p)}{H} = \frac{32 U}{D^2}$ D^2 and D^2 and D^2 and D^2 $\Rightarrow \frac{(-p)}{H_e} = \frac{K_1 U_i}{D_e^2}$ D_e^2

 Hagen-Poiseille equation

Substituting suitable relations for (equivalent height) and (equivalent diameter)

$$
\therefore \frac{(-p)}{H} = 180 \frac{U}{x^2} \frac{(1-\tau)^2}{3}
$$

 Carman-Kozeny equation

2) General Equation for Turbulent and Laminar Flow

Ergun equation

$$
\frac{A}{E} = 150 \frac{U}{x^2} \frac{(1 - \mu)^2}{3} + 1.75 \frac{U^2}{x} \frac{(1 - \mu)^2}{3}
$$

 Laminar Turbulent

$$
\text{Laminar flow for } Re* = \frac{xU_f}{(1-\tau)} < 10
$$
\n
$$
\text{D} \quad \text{M} \quad \
$$

$$
Turbulent flow for Re* = \frac{xU_f}{(1-\gamma)} > 2000
$$

or

$$
f* = \frac{150}{Re*} + 1.75
$$

ε

$$
\text{where} \quad f* \equiv \frac{(-p)}{H} - \frac{x}{fU^2} \frac{3}{(1-\tau)^2}
$$

Friction factor

 Figure 4.1

3) Nonspherical Particles

^x sv *(surface-volume diameter) instead of* ^x

Worked Example 4.1

(2) (Liquid) Filtration

(1) Introduction

Filter media : Canvas cloth, woolen cloth, metal cloth, glass, cloth, paper, synthetic fabrics

Filter aids : To avoid cake plugging

e.g. Diatomaceous silica, perlite, purified woolen cellulose, other inert porous solids

- By either adding slurry (increasing cake permeability) or precoating the filter media surface

1) Incompressible Cake

For cake filter

From laminar part of Ergun equation

$$
\frac{(1-p)}{H} = \frac{150 U(1-p)}{x^{2-3}}
$$

^x *: surface-volume diameter of particle*

** For compressible filter cake,*

$$
\frac{dp}{dL} = r_c \ U
$$

where r_c *: a function of pressure difference*

By defining cake resistance r_c

^r ^c= ε 150 (1 -) 2 x ² ε 3 *,* Δ (- ^p) ^H = ^r μ ^c ^U *where* U= 1 A dV dt

^V*: volume of slurry fed to filter*

φ *Also defining (volume formed by passage of unit volume filtrate)*

$$
\Phi = \frac{H A}{V},
$$

$$
\frac{dV}{dt} = \frac{A^2(-p)}{r_c V}
$$

Including the resistance of filter medium,

since the resistances of the cake and the filter medium are in series,

$$
\Delta \qquad \qquad (- \quad p) = (- \quad p_m) + (- \quad p_c)
$$
\n
$$
\downarrow
$$
\n
$$
\frac{1}{A} \frac{dV}{dt} r_c \ H_c
$$

By analogy for the filter medium

$$
\begin{aligned}\n\mathbf{A} \quad & (-\quad p_m) = \frac{1}{A} \frac{dV}{dt} r_m \ H_m \\
\mathbf{A} \quad & \therefore (-\quad p) = \frac{1}{A} \frac{dV}{dt} (r_m \ H_m + r_c \ H_c)\n\end{aligned}
$$

Defining equivalent height of filter cake and volume of filtrate

$$
\Phi \qquad \qquad r_m H_m = r_c H_{eq} \quad \text{and} \quad H_{eq} = \frac{V_{eq}}{A}
$$
\n
$$
V_{eq} = \frac{A}{\phi} \frac{r_m H_m}{r_c}
$$

$$
V_{eq} = \frac{A}{\phi} \frac{r_m H_m}{r_c}
$$

where V_{eq} *volume of filtrate passing to create a cake of thickness* H_{eq}

$$
\therefore \frac{1}{A} \frac{dV}{dt} = \frac{(-p)A}{r_c (V+V_{eq})}
$$

Constant rate filtration

$$
\frac{1}{A} \frac{dV}{dt} = \frac{(-p)A}{r_c (V + V_{eq})} = constant
$$

Constant pressure filtration

Integrating

$$
\frac{t}{V} = \frac{r_c}{A^2(-p)} \left(\frac{V}{2} + V_{eq}\right)
$$

Worked Example 4.2

3) Washing the Cake

Figure 4.2

4.2 Fluidization (Chapter 5)

(1) Fundamental

Δ *** ^p vs. ^U *Figure 5.1*

Minimum (incipient) fluidization, U_{mf}

From force balance

Net downward force

$$
\mathbf{A} \qquad \qquad p = (1 - \quad)(\quad p - \quad g)H \qquad (1)
$$

Net upward force

$$
\frac{p}{H} = 150 \frac{(1 -)^2}{3} \frac{U}{x_{sv}^2} + 1.75 \frac{1 - \frac{gU^2}{3}}{x_{sv}} \tag{2}
$$

Equating (1) and (2) at $U = U_{mf}$

$$
Ar = 150 \frac{(1 -)}{3} Re_{mf} + 1.75 \frac{1}{3} Re_{mf}^2
$$

 p
where $A \mathsf{r} \equiv \frac{s^{X_{\mathrm{SV}}^3} \left(\begin{array}{cc} p^- & f \end{array} \right) \mathsf{g}}{2}$, Archim $\frac{p}{2}$, *Archimedes number*

$$
Re_{mf} = \frac{f U_{mf} X_{sv}}{2}
$$

$$
\varepsilon = 0.4, usually
$$

More practically,

ε

ε

μ

μ

Wen and Yu(1966) for $x_{sv} > 100$ *m*

$$
Ar = 1056Re_{mf} + 159Re_{mf}^2
$$

μ *Baeyens and Geldart(1974) for* ^x < 1 0 0 ^m

$$
U_{mf} = \frac{(-\rho - \rho)^{0.934} g^{0.934} x^{1.8}}{1110^{-0.87} \frac{0.66}{0.066}}
$$

** Densities of particles*

- Absolute density: materials property

- Particle density: Figure 5.2

- Bed density

* Sieve diameter, x_p , $x_v = 1.13x_p$

$$
mean \t x_p = \frac{1}{\sum m_j / x_i}
$$

(2) Bubbling and Non-Bubbling Fluidization (5.3)

Types of Fluidization

Various types of fluidized beds

- Bubbling fluidized bed : Figure 5.3 for Group B particles

- Liquid fluidization: Figure 5.4

Worked Example 5.1

(3) Classification of Powders (5.4)

Geldart(1974) Figure 5.6 Table 5.1

- *Group A : Nonbubbling for U* $_{mf}$ $\langle U \rangle \langle U \rangle$
- *Group B : Bubbling for* $U > U_{mf}$

No maximum in bubble size

Group D : Spoutable

Group C : Subject to channeling in large diameter-bed

(4) Applications of Fluidized Beds(5.8)

Advantages

- *Liquid-like behavior, easy to control and automate*
- *Rapid mixing, uniform temperature and concentration*
- *Resists rapid temperature changes, hence responds slowly to changes in*
- *operating conditions and avoids temperature runaway with exothermic reactions*
- *Circulate solids between fluidized beds for heat exchange*
- *Applicable for large or small scale operations*
- *Heat and mass transfer rates are high, requiring smaller surfaces*

Disadvantages

- *Bubbling beds are difficult to predict and are less efficient*
- *Rapid mixing of solids causes nonuniform residence times for continuous flow reactors*
- *Particle comminution(breakup) is common*
- *Pipe and vessel walls erode to collisions by particles*
- *1) Physical Processes*

 Drying / Mixing / Granulation / Coating / Heat exchanger/ Adsorption Figure 5.17

2) Chemical Processes

 Table 5.2

 Figure 5.18 Fluidized catalytic cracker

4.3 Pneumatic Transport (Chapter 6)

(1) Pneumatic Transport

- Use of a gas to transport a particulate solid through pipeline

- *Three major variables for pneumatic conveying*
	- *solid mass flow rate*
	- *gas mass flow rate*
	- *pressure gradient(pressure drop per unit length)*

1) Dilute-Phase and Dense-Phase Transport

2) The Choking Velocity in Vertical Transport

Δ *Figure 6.1 -* p/ ^L *vs.* ^U *(gas superficial velocity) at various solids flow flux G Static head of solids* [→] *friction resistance*

Choking velocity, UCH

ρ

The lowest velocity at which the dilute-phase transport can operate at G given

Punwani et al (1976)

$$
\frac{U_{CH}}{CH} - U_T = \frac{G}{\frac{D}{\rho}(1 - \frac{C}{CH})}
$$
\n
$$
\frac{E}{P}
$$
\n
$$
E = \frac{2250D(-\frac{4.7}{CH} - 1)}{\left[\frac{U_{CH}}{CH} - U_T\right]^2}
$$

3) Saltation Velocity in Horizontal Transport

Δ *Figure 6.2 -* p/ ^L *vs.* U*(gas superficial velocity) at various solids flow flux G*

Saltation velocity, USALT

The gas velocity at which the solids to begin to settle out Boundary between dilute phase flow and dense phase flow

Rizk(1973)

$$
\frac{M_p}{rU_{SALT}A} = \left\{ \frac{1}{10^{-(1440x+1.96)}} \right\} \left\{ \frac{U_{SALT}}{\sqrt{gD}} \right\}^{(1100x+2.5)} in SI
$$

solid loading
Froude number

 at saltation

where M_p *: particle mass flow rate*

D *: pipe diameter*

4) Fundamentals

Gas and particle velocity

Superficial velocity

$$
U_{fs} = \frac{Q_f}{A} \quad \text{and} \quad U_{fp} = \frac{Q_p}{A}
$$

Actual velocity

$$
U_f = \frac{Q_f}{A} = \frac{U_{fs}}{A} \quad \text{and} \quad U_p = \frac{Q_p}{A(1-)} = \frac{U_{ps}}{1-}
$$

*** Slip velocity U_{slip}

$$
U_{rel} = U_f - U_p \equiv U_{slip}
$$

Continuity

Gas mass flow rate

 $M_f = A U_f$ f

Particle mass flow rate

$$
M_p = A U_p (1 - \)
$$

Solid loading

$$
\frac{M_p}{M_f} = \frac{U_p(1-\vphantom{H})_{p}}{U_f - \vphantom{H}f}
$$

↓

-
 solids
 gas-wall solids-wall
 gas-wall solids-wall

Pressure drop

From Newton's 2nd law of motion Figure 6.3 Rate of momentum for flowing gas-solid mixture = Net force exerting on the mixture

gas solids
acceleration acceleration

 gas gravity solids gravity

 $p_1 - p_2 = \frac{1}{2}$ $_f U_f^2 + \frac{1}{2}$ $_p(1 -)U_p^2 + F_{fw}L + F_{pw}L$

 \mathbf{p} + $\partial_t L g \sin + \partial_t L (1-\partial_t g) g \sin$

5) Design for Dilute Phase Transport

Gas velocity

 $U_f \sim 1.5 U_{SALT}$ since $U_{SALT} \rightarrow U_{CH}$

for systems comprising both vertical and horizontal lines $U_f \sim 1.5 U_{CH}$ *for vertical line only*

Table. Approximate air velocity for powder transport

Powder	U, m/s
Wheat, rice, plastic pellets	$16 - 24$
Grains, limestone powder	$16 - 23$
Soda ash, sugar	$15 - 20$
PVC powder	$20 - 26$
Carbon powder	$18 - 24$
Cement	$18 - 28$
Alumina powder	$24 - 32$
Sand	$23 - 30$

Pipeline pressure drop

 $F_{\mu\nu}L = 0.057 GL\sqrt{\frac{g}{D}}$ D and D and D and D and D *for vertical transport* $F_{\mu\nu}L = \frac{2f_p(1-\mu)}{D} \frac{L^2 L}{\rho} = \frac{2f_p G L}{D}$ $\frac{1}{D} \frac{D}{D} \frac{D^2 L}{D} = \frac{2 f_{p} G U_{p} L}{D}$ for horiz $\frac{S \times p}{D}$ for horizontal transport W *p* $U_p = U_f(1 - 0.0638 \, x^{0.3} \, p^{0.5})$ *and* $f_p = \frac{3}{8} - f C_p \frac{D}{d}$ $8\qquad \qquad 8$ $f_{p} = \frac{3}{8} - \frac{f}{p} C_{p} \frac{D}{d_{p}} \left(\frac{U_{f} - U_{p}}{U_{p}} \right)$ $U_f - U_p$ $\overline{U_p}$ C_p *:* drag coefficient (fn of Re_p)

Bend

~ *7.5 m of vertical section pressure drop*

** Downflow through vertical-to-horizontal bend : - greater tendency for saltation*

-
- *avoided if possible.*
- ** Blinded tee bend : Figure 6.4 with respect to radius elbow*
	- *prolonging service life due to cushioning effect*
	- *with the same pressure drop and solid attrition rate*

Worked Example 6.1

Equipment

Figure 6.5 Positive pressure system Figure 6.6 Negative Pressure system

Some problems in pneumatic transport

6) Dense Phase Transport

Flow Patterns

- Horizontal - Figure 6.7

*Saltating flow - unstable, bad flow pattern Discontinuous dense phase flow**

Dune Flow / Discrete Plug Flow / Plug Flow Continuous Dense Phase Flow - requires high pressure adequate for short-pipe transport*

Equipment

Blow tanks : with fluidizing element (Figure 6.13) without fluidizing element (Figure 6.14) Plug formation : air knife (Figure 6.10) air valve (Figure 6.11) diaphragm (Figure 6.12) Plug break-up : bypass (Figure 6.8) pressure actuated valves (Figure 6.9)

Design and Operation

- *Use of test facilities + past experience for pipe size, air flow rate and type of dense phase system - Group A, D better than Group B, C for dense phase conveying*
-
- *Higher permeability: more suitable for plug flow type conveying*
- *Higher air retention: more suitable for dune mode flow*

4.3 Flow of Liquid-Solid Suspension (Slurries)(Supplement)

Characteristics of hydraulic transport

Transition velocity

Durand(1953)

$$
{U}_{tr}=11.9(\ {U}_{T}D)^{1/2}x^{1/4}
$$

where D: pipe diameter

Critical(saltation) velocity

Durand(1953)

$$
U_c = F_L[2gD(\, p \, | \, f-1)]^{1/2}
$$

$$
\varepsilon \qquad \qquad \text{where} \quad F_L: \text{ function of } x \text{ and}
$$

 Hanks (1980)

$$
U_c = 3.12(1 - 0.186 \left(\frac{X}{D}\right)^{1/6} [2gD(\frac{1}{p'} - 1)]^{1/2}
$$