Chapter 1. Particle Size Analysis

1.1 Introduction

Particle size/particle size distribution: a key role in determining the bulk properties of the powder...

Size ranges of particles (x)

- Coarse particles : >10 m
- Fine particles : ~1 m
- Ultrafine(nano) particles : <0.1 m (100nm)

1.2 Describing the Size of a Single Particle

Description of regular-shaped particles: Table 3.1

Figure 3.1

Geometric diameters

- Martin's diameter
- Feret diameter
- Shear diameter

Equivalent (sphere) diameters Figure 3.2

- Equivalent volume (sphere) diameters:

the diameter of the hypothetical sphere having the same volume

$$x_v = \left(\frac{6 V}{2}\right)^{1/3}$$

- Equivalent surface diameter:

the diameter of the hypothetical sphere having the same surface area

$$x_s = \left(\underline{S}\right)^{1/2}$$

π

π

- Surface-volume diameter:

the diameter of the hypothetical sphere having the same surface-tovolume ratio

$$x_{sv} = \frac{6V}{S}$$

"Which diameter we use depends on the end use of the information."

Worked Example 3.1 Worked Example 3.6

1.3 Description of Population of Particles

<u>Particle size</u> ~ diameter, x(m)Figure 3.3

Frequency distribution $f_N(x)$, [fraction]

 $f_N(x) dx$:

μ

μ

π ρ

π ρ fraction of particle counts (numbers) with diameters between x and x + dx

Cumulative distribution : $F_N(a) = \int_0^a f_N(x) dx$, [fraction]

$$f_N(x) = \frac{dF_N(x)}{dx}$$

 $\frac{Mass(or \ volume) \ distribution}{f_M(x) dx} f_M(x), (mass \ fraction/m)$

fraction of particle mass with diameters between x and x + dx

$$f_{M}(x)dx = \frac{p_{\overline{6}} x^{3} f_{N}(x) dx}{\int_{0}^{\infty} p_{\overline{6}} x^{3} f_{N}(x) dx} = \frac{x^{3} f_{N}(x) dx}{\int_{0}^{\infty} x^{3} f_{N}(x) dx} = f_{V}(x)$$

Surface-area size distribution function

$$f_{S}(x)dx = \frac{x^{2}f(x)dx}{\int_{0}^{\infty} x^{2}f(x)dx} = \frac{x^{2}f(x)dx}{\int_{0}^{\infty} x^{2}f(x)dx}$$

Figure 3.4

Table 3.3

1.4 Conversion Between Distributions

From above

$$f_{M}(x) = f_{V}(x) = \frac{x^{3}f_{N}(x)}{\int_{0}^{\infty} x^{3}f_{N}(x)dx} = k_{V}x^{3}f_{N}$$
where $k_{V} = \frac{1}{\int_{0}^{\infty} x^{3}f_{N}(x)dx}$

$$f_{S}(x) = \frac{x^{2}f_{N}(x)}{\int_{0}^{\infty} x^{2}f_{N}(x)dx} = k_{S}x^{2}f_{N}$$
where $k_{S} = \frac{1}{\int_{0}^{\infty} x^{2}f_{N}(x)dx}$

$$f_{M}(x) = f_{V}(x) = k_{V}x^{3}f_{N} = k_{V}x^{3}\frac{f_{S}(x)}{k_{S}x^{2}} = \frac{k_{V}}{k_{S}}xf_{S}(x)$$
where $k_{V} = \frac{1}{\int_{0}^{\infty} x^{3}f_{N}(x)dx}$

Worked Example 3.2Worked Example 3.3Worked Example 3.4

π π

1.5 Describing the Population by a Single Number

1) Averages

<u>Mode</u>: most-frequent size <u>Median</u>: x at F(x) = 0.5

Mean: Table 3.4

In general,
$$g(\overline{x}) = \int_0^\infty g(x)f(x)dx = \int_0^1 g(x)dF(x)$$

- Arithmetic mean: g(x) = x

$$\overline{x} = \int_0^\infty x f(x) dx = \int_0^1 x dF(x)$$

where F(x) can be $F_N(x)$, $F_S(x)$ and $F_V(x)$

* Also called first moment average

If
$$F(x) = F_N(x)$$
, $\overline{x}_{aN} = \int_0^1 x dF_N$

Arithmetic mean diameter of number distribution

If
$$F(x) = F_S(x)$$
,

$$\overline{x}_{aS} = \int_{0}^{1} x dF_{S} = \frac{\int_{0}^{1} x dF_{S}}{\int_{0}^{1} dF_{S}} = \frac{\int_{0}^{1} x^{3} dF_{N}}{\int_{0}^{1} x^{2} dF_{N}} = \overline{x}_{SV}$$

Arithmetic mean diameter of surface area distribution Surface-volume mean diameter (Sauter mean diameter)

- Geometric mean $(g(x) = \ln x)$

$$\log x_g = \log x = \left[\int_0^1 \log x dF \right]$$

- Harmonic mean $(g(x) = \frac{1}{x})$

$$\frac{1}{\overline{x_h}} = \left[\int_0^1 \frac{1}{x} \, dF \right]$$

Figure 3.6

Worked example 3.5

2) Standard deviation

$$= \left[\int_{0}^{\infty} (x - \overline{x})^{2} dF(x) \right]^{1/2} = \left[\int_{0}^{\infty} (x - \overline{x})^{2} f(x) dx \right]^{1/2}$$

Degree of dispersion

1.7 Common Methods of Displaying Size Distribution

1) Arithmetic Normal(Gaussian) distribution: Figure 3.7

$$f(x) dx = \frac{1}{\sqrt{2}} \exp\left[-\frac{(x-\overline{x})^2}{2^2}\right] dx$$

and
$$= x_{84\%} - x_{50\%} = x_{50\%} - x_{16\%} = 0.5(x_{84\%} - x_{16\%})$$

- Hardly applicable to particle size distribution Figure 3.8 ∵ Particles : no negative diameter/distribution with long tail

$$\ln_{g} = \left[\int_{0}^{\infty} (x - \overline{x})^{2} dF(x) \right]^{1/2} = \left[\int_{-\infty}^{\infty} (\ln x - \ln x_{g})^{2} f(\ln x) d\ln x \right]^{1/2}$$

$$g : geometric standard deviation$$

Figure 3.9

$$_{g}=rac{X_{84\%}}{X_{50\%}}=rac{X_{50\%}}{X_{16\%}}=\left[rac{X_{84\%}}{X_{16\%}}
ight]^{rac{1}{2}}$$

σ

σ

σ

σ

σ

σ

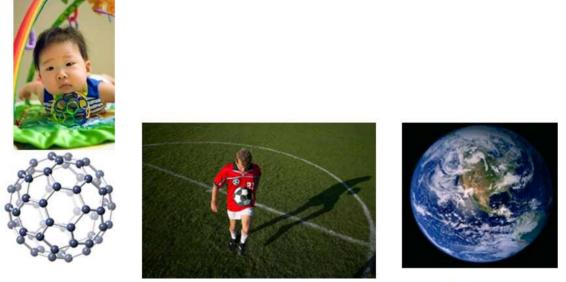
σ

σ

- * Dispersity criterion
 - Monodisperse : = 0 or $_g = 1$, in actual $_g < 1.2$
 - Polydisperse: $_{g} > 1.4$ (or 1.2)

1.S1 Understanding Size of Nanoparticles

Comparison with bulk



Buckminster fullerene Football

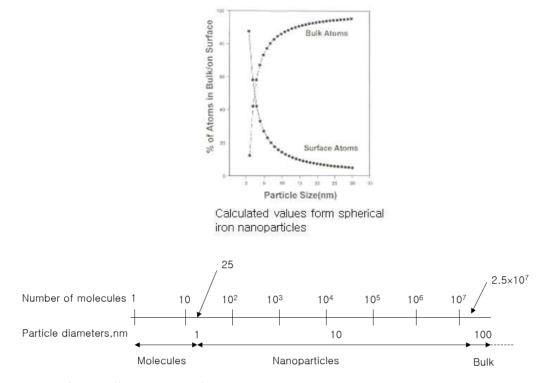
Planet earth

if a buckyball (60 carbon atoms arranged into a sphere with a diameter of approximately 1 nm) were expanded to the size of a football, the football would correspondingly be expanded so that it was much bigger than the size of Earth (becoming approximately the size of Neptune or Uranus – about 50,000km in diameter).

Fullerene-named after the architect, Buckminster Fuller, who designed "Geodesic dome"

σ σ

Atoms(molecules) in nanoparticles



Extremely small nanoparticles!

Full-shell Clusters		Total Number of Atoms	Surface Atoms (%)
I Shell	66	13	92
2 Shells		55	76
3 Shells		147	63
4 Shells		309	52
5 Shells		561	45
7 Shells		1415	35

Full-shell clusters

* Polymers-Nanoparticles?

$$V = 0.001661 \frac{M_w}{\rho}$$
, in nm^3

where M_w (molecular weight) and ρ (density) in cgs units

Example.

분자량이 100,000이고 밀도가 1g/cm³인 고분자 물질의 부피와, 구라고 가정하고 지름을 구해 보아라.

x := 6.82nm

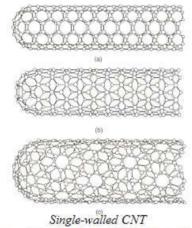
* Biological substance-Nanoparticles?

$d_v = 0.1469 \left(\frac{M_w}{\rho} \right)^{1/3}$, in nm

Class	Material	M_w (Da)	Size d (nm)
Amino acids	Glycine (smallest amino acid)	75	0.42
	Tryptophan (largest amino acid)	246	0.67
Nucleotides	Cytosine monophosphate (smallest DNA nucleotide)	309	0.81
	Guanine monophosphate (largest DNA nucleotide)	361	0.86
	Adenosine triphosphate (ATP, energy source)	499	0,95
Other molecules	Steric acid C17H35CO2H	284	0.87
	Chlorophyll, in plants	720	1.1
Proteins	Insulin, polypeptide hormone	6,000	2.2
	Hemoglobin, carries oxygen	68,000	7.0
	Albumin, in white of egg	69,000	9.0
	Elastin, cell-supporting material	72,000	5.0
	Fibrinogen, for blood clotting	400,000	50
	Lipoprotein, carrier of cholesterol (globular shape)	1,300,000	20
	Ribosome (where protein synthesis occurs)		30
	Glycogen granules of liver		150
Viruses	Influenza		60
	Tobacco mosaic, length		120
	Bacteriophage T2		140

Class	Material	Size d (µm)
Organelles (structures in cells outside nucleus)	Mitochondrion, where aerobic respiration produces ATP molecules	0.5 imes 0.9 imes 3
	Chloroplast, site of photosynthesis, length	4
	Lysosome (vesicle with enzymes for digesting macromolecules)	0.7
	Vacuole of amoeba	10
Cells	Escherichia coli (E. coli) bacterium, length	8
	Human blood platelet	3
	Leukocytes (white blood cells), globular shape	8-15
	Erythrocytes (red blood cells), disk shape	1.5 × 8
Miscellaneous	Human chromosome	9
	Fascicle in tendon	50-300

* Special nanoparticles(nanomaterials)-carbon nanotubes



(a) armchair; (b)zigzag; (c)chiral structures

Multi-walled CNT

1.S2 Size-Related Properties of Nanoparticles

- * Finite size effect small number of atoms and electrons
- * Surface/interface effect large fraction of active surface atoms

Example.

Consider a sphere with a diameter with a diameter of 1um. If this mass of sphere is converted (through a size reduction process) to spheres with a diameter of 1nm, calculate the increase in surface area of the smaller sized spheres.

Surface area of 1um-sphere

$$\pi \left(1{\cdot}10^{-6}{\rm m}\right)^2 = 3.142 \times 10^{-12} {\rm m}^2$$
 Number of 1nm-spheres from 1um spheres

$$\frac{\left(1.0 \cdot 10^{-6}\right)^3}{\left(1.0 \cdot 10^{-9}\right)^3} = 1 \times 10^9$$

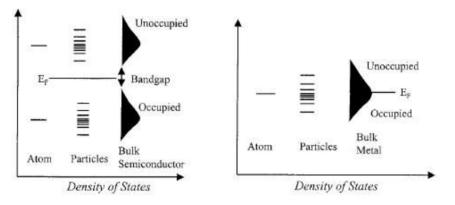
Total surface area of 1-nm spheres

$$1 \cdot 10^9 \pi (1 \text{nm})^2 = 3.142 \times 10^{-9} \text{m}^2$$

$$\frac{3.142 \cdot 10^{-9} \text{m}^2}{3.142 \cdot 10^{-12} \text{m}^2} = 1 \times 10^3 \text{ times increase...}$$

(1) Quantum size (confinement) effects

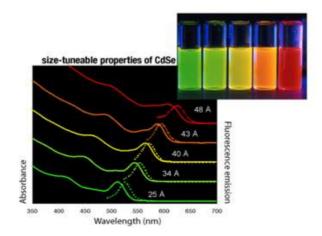
- Small number of atoms and electron as size decreases(<de Broglie wavelength*)



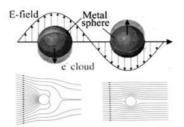
Energy Levels in Semiconductor and Metal Particles

Optical properties of semiconductors

- Rapidly increase in band gap with a decreasing size
- Blue shift



(2) Surface plasmon resonance of metal nanoparticles



- Coherent excitation of all the free electrons by light, leading to an in-phase oscillation for particles ($x < \lambda_{light}$) - Intense SP absorption bands at a certain wavelength

(3) Coulomb Blockade

Ohm's law, $I = \frac{V}{R}$, I is linear with respect to V

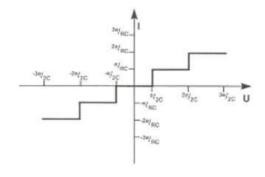
A single electron can be added

when $E > \frac{e^2}{2C}$ or $V = \frac{dE}{de} > \frac{e}{C}$ where $C(x) = 2\pi x \varepsilon_0 \varepsilon_r$

For bulk materials $(x \rightarrow \infty)$, $C(\infty) = \infty$ and $V \rightarrow 0$

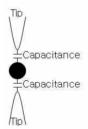
For nanoparticles $(x \downarrow)$, $C(x) \downarrow$ and $V \rightarrow finite$

When $E \gg kT$ and $R \gg \frac{h}{e^2}$



Coulomb blockade

* Single electron transistor



(3) Magnetic properties of ferromagnetic particles

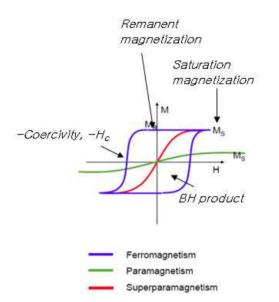
- Ferromagnetic materials

Atoms: unpaired electrons \rightarrow *domain formation*

Bulk: multidomain

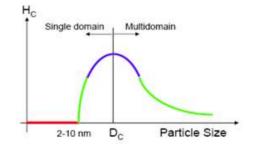
cf. diamagnetism, paramagnetism

- Behavior of ferromagnetic materials under magnetic field: BH diagram



- For small particles($x: 10 \sim 100$ nm), single domain is in the lowest energy state \rightarrow "Single- domain particles"
 - \cdot Used for magnetic recording media
- For smaller particles(x < 15nm)

· Thermal fluctuation > magnetic alignment as the size decreases \rightarrow "Superparamagnetism"



• No hysteresis loop and high M_s

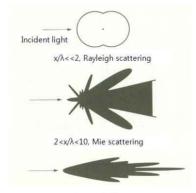
• Used in biomedical application, ferrofluids, sensors

1.9 Methods of Particle Size Measurement

- 1) Sieving
- 2) Microscopy

Electron microscopy

- 3) Sedimentation
- 4) Permeametry
- 5) Electrical methods
 - Electrical mobility
 - · Electrozone sensing
- 6) Laser Diffraction
 - · Optical particle counter



10<x/λ, Fraunhoffer scattering

· Photon correlation spectroscopy (dynamic light scattering)