Chapter 12 Fire and Explosion Hazards of Fine Powders

12.1 Introduction

Explosion

- Flammable gas: fuel concentration, local heat transfer conditions, oxygen concentration, initial temperature
- Dusts: + particle size distribution, moisture content
- * Powders High surface area / small size (small heat capacity)

 Combustible powders → can be explosible
 - e.g. agricultural/chemical/coal/foodstuffs/metals/pharmaceuticals/plastics/woodworking
 - Organic dust :

heating \rightarrow emission of combustible gases \rightarrow explosion

- Metals :

protective oxide films → breaking by sudden heating

12.2 Combustion Fundamentals

(1) Flames

- Flammable materials + oxygen + ignition source
- Stationary flame vs. explosion flame according to the behavior of flame front

(2) Explosion and Detonation

- Generation of gaseous combustion products
 - \rightarrow rapid gas expansion or
 - → rapid pressure increase
- Detonation vs.deflagration

Determined by flame speed (< or > speed of sound) which is

governed by heat of combustion degree of turbulence ignition energy

* Primary vs. secondary explosion

compression wave of small explosion \rightarrow increase in resuspending particles

- ∵ Compression wave precedes the flame.
- (3) Ignition Simple Analysis for Ignition

Energy balance for fuel-air mixture:

$$Q_{input} + (-\Delta H) \left[Z \exp\left(-\frac{E}{RT}\right) \right] C \rho_{m, fuel} =$$

Heat input Heat generated

$$V[CP_{m, fuel}C_{p, fuel} + (1 - C)P_{m_{air}}C_{p, air}]\frac{dT}{dt} + hA(T - T_s), J/s$$

heat accumulation heat dissipated

where C: volumetric concentration of fuel

ρ: molar density

V: volume of fuel-and-air mixture element

A: surface area of the element

* Figure 12.1

 $T_{B} \rightarrow \textit{Ignition}$ temperature

Explosion → "Runaway" reaction

Figure 12.2 Effect of heat input

Figure 12.3 Autoignition(spontaneous ignition)

(4) Flammability Limits

- Upper and lower flammability limit, C_{fL} , C_{fU} in volume % fuel
- Minimum oxygen for combustion

For C_3H_8 $C_{\it fL}=2.2\%$ by volume,

$$MOC = C_{fL} \cdot \left[\frac{moles \ O_2}{moles \ fuel} \right]_{Stoich}$$

= 2.2 \cdot 5 = 11% \ O_2 \ by \ volume

Worked Example 12.1

Worked Example 12.2

12.3 Combustion in Dust Clouds

(1) Fundamental to Specific to Dust Cloud Explosion

$$(-\Delta H) \left[Z \exp\left(-\frac{E}{RT}\right) \right] C \rho_{m, fuel}$$

$$(-\Delta H) r V \longrightarrow (-\Delta H) r'' S \cdot \left(\frac{surface \ fuel}{volume \ fuel} \right) = (-\Delta H) r'' S \cdot \frac{6}{x}$$

- * Particle size : very important
 - Dispersion
 - Surface area for reaction
 - Specific heat of reaction
 - Heat up rate

(2) Characteristics of Dust Explosion

little data on powder properties

- Minimum dust concentration
- Minimum oxygen for combustion (MOC)
- Minimum ignition temperature
- Minimum ignition energy
- Maximum explosion pressure

- Maximum rate of pressure rise

$$\left(\frac{dp}{dt}\right)_{\text{max}} V^{1/3} = K_{ST}$$

As close as possible to plant conditions

Table 12.1

Table 11.2 - Explosion class (K_{ST})

(3) Apparatus for Determination of Dust Explosion Characteristics

- Ignition source
- Dust dispersion
- Vertical tube apparatus Figure 12.4

(max.dust concentration, min. energy for ignition, MOC)

- Sphere apparatus Figure 12.5

(max. explosion pressure and max. rate of pressure rise)

- Godbert-Greenwald furnace apparatus (min. ignition temperature)

12.4 Control of the Hazard

(1) Introduction

- Change the process to eliminate the dust
- Design the plant to withstand the pressure generated by any explosion
- Remove the oxygen to below MOC
- Add moisture to the dust
- Add diluent powder to the dust

(2) Ignition Sources

Flames / Smouldering / hot surfaces / welding and cutting / friction and impact / electric spark / spontaneous heating

(3) Venting

- Simple and inexpensive method

Figure 12.6

Worked Example 12.3

(4) Suppression

- Discharging a quantity of inert gas and inert powder into the vessel
- * Suppression systems

Automatic venting/advance inerting/automatic shutdown

(5) Inerting

- N_2 and CO_2
- Oxygen concentration < MOC

(6) Minimize Dust Cloud Formation

- Use of dense phase conveying
- Use cyclone and filters instead of settling vessels
- Dot not allow the powder stream to fall freely through the air

(7) Containment