Chapter 7

Unsteady flows



Transient pressure flow

Assume: laminar flow at low Reynolds number, little effect of entrance region,
isothermal incompressible Newtonian flow, the only velocity component Uu,(r,t)
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Steady solution of Hagen-Poiseuille flow
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Assume:

1.solution is the sum of steady solution and an unknown transient function U(r,t)
2.transient pressure is identical to the steady profile even for the unsteady flow
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Quasi-steady flows
- draining of a tank through a capillary

Time dependence comes from the time
dependent pressure that drives the flow

p=pgH({t) at z=0
Pressure source is hydrostatic head
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Coupled integro-differential equation



If the flow is slow enough, we use a steady state model for one particular
feature of an unsteady but slowly varing flow
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Requires infinite time for complete drainage
for 90% drainage for 95% drainage for 99% drainage
r=23 when H/H,=0.10 t = 24 Ul Ay r=46 when H/H =0.01
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Squeezing flow

Time dependence comes from a time
dependent change in the geometry

Laminar creeping flow

Order of magnitude

Axial Q=2zR*H U
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Radial Q=27Rx2H xU, H 2H

Radial velocity is much greater than axial velocity
(except very close to the plate)
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Since the disks are rigid bodies, u, along the surfaces is independent of
radial position -> assume u, is everywhere independent of r
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This pressure resists the movement of the disks toward each other,
so an external force is required to drive them together
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If the disks are driven under constant force
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! ' good for high viscosity, slow squeezing
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Squeezing flow of inviscid fluid
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Slip boundary conditoin

Radial velocity is independent
of the axial position
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Strictly from the unsteady
nature of the flow



Draining of a liquid film from a vertical plate

A uniform film of initial thickness H suddenly begins to
drain, and the initial amount of liquid ultimately drains
completely off the plate

Assume:

film thickness varies gradually in the x-direction
(nearly parallel flow)

Viscous thin film with low Reynolds number

| (neglect inertia, surface tension)
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Lubrication approximation Quasi-steady approximation:
almost parallel flow the flow field for any film thickness h(x,t) is the

same as the steady flow for uniform film thickness
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Any difference between the flow in and out of film must appear as a
change in film thickness
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Excellent at least after an initial period of time
as long as we are not concerned with the film thickness near the top plate



Leveling of a surface disturbance

Magnetic recording system

\_/Li = Slider velocity ~ 10m/s
Air gap ~ a few hundred nanometers or less

~— Lubricant

Air Gap Y e .
S .., Ubricantto prevent contact ~ 30-50A
M: ic | ercoat _ .
T T In the order of molecular size, certain
s phenomena are not accounted for by NS

Contact of the slider with the lubricant results in a furrow
-> how quickly the lubricant flows back into the furrow to restore the protection

Assume the disturbance to the film
= thickness is simusoidal
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Assumption: lubrication approximation, quasi-steady state
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Neglect any effect of gravity because the film is so thin
Surface tension provides the dominant force for restoration of the uniform film
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Decay rate for the disturbance
A disturbance to an extremely thin film will decay very slowly

If one uses a lubricant of low viscosity,

1.Low viscosity lubricants will have a smaller load-bearing capacity,
and it will be easier for the head to crash through the lubricant

2.Since the high centrigugal force tends to produce a radial flow of
lubricant off the disk

-> design of new lubricants is important (i.e. that bond chemically to the

topmost solid layer of the disk
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