
Chapter 7

Unsteady flows



Transient pressure flow
Assume: laminar flow at low Reynolds number, little effect of entrance region, 
isothermal incompressible Newtonian flow, the only velocity component ),( truz
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Steady solution of Hagen-Poiseuille flow
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Assume: 
1.solution is the sum of steady solution and an unknown transient function U(r,t)
2.transient pressure is identical to the steady profile even for the unsteady flow
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Transient disappears in a 
dimensionless time of the 
order of 1=τ
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R: equivalent radius



Quasi-steady flows
- draining of a tank through a capillary
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Pressure source is hydrostatic head
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Coupled integro-differential equation

Time dependence comes from the time 
dependent pressure that drives the flow



If the flow is slow enough, we use a steady state model for one particular 
feature of an unsteady but slowly varing flow

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−=

22

1
4
)(

R
rRtCuz μ dt

dHA
L

tgHRQ T

4 )(
8

−==
ρ

μ
π

L
pRQ Δ

=
μ

π
8

4

τ−= e
H
H

o

t
AL

gR

T

4

8μ
πρτ ≡

Requires infinite time for complete drainage
for 90% drainage for 95% drainage for 99% drainage
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Squeezing flow
Time dependence comes from a time 
dependent change in the geometry

Laminar creeping flow

Order of magnitude

Axial

Radial
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Radial velocity is much greater than axial velocity
(except very close to the plate)
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Assume viscous effect dominates 
inertial (accelerative) effect

Since the disks are rigid bodies, uz along the surfaces is independent of 
radial position -> assume uz is everywhere independent of r
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This pressure resists the movement of the disks toward each other, 
so an external force is required to drive them together
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If the disks are driven under constant force
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good for high viscosity, slow squeezing



Squeezing flow of inviscid fluid

Slip boundary conditoin

Radial velocity is independent 
of the axial position
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Draining of a liquid film from a vertical plate
A uniform film of initial thickness H suddenly begins to 
drain, and the initial amount of liquid ultimately drains 
completely off the plate

Assume:
film thickness varies gradually in the x-direction
(nearly parallel flow)
Viscous thin film with low Reynolds number
(neglect inertia, surface tension)
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Lubrication approximation
almost parallel flow

Quasi-steady approximation:
the flow field for any film thickness h(x,t) is the 
same as the steady flow for uniform film thickness



The flow rate per unit width in the y-direction
ν3
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Any difference between the flow in and out of film must appear as a 
change in film thickness
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1.Thickness is infinite at t=0
2.Thickness is zero at the top 

Excellent at least after an initial period of time
as long as we are not concerned with the film thickness near the top plate



Leveling of a surface disturbance
Magnetic recording system

Slider velocity ~ 10m/s
Air gap ~ a few hundred nanometers or less

Lubricant to prevent contact ~ 30-50Å

In the order of molecular size, certain 
phenomena are not accounted for by NS

Contact of the slider with the lubricant results in a furrow
-> how quickly the lubricant flows back into the furrow to restore the protection

Assume the disturbance to the film 
thickness is simusoidal

kxhHxH sin)( +=

λ
π2

≡k Hh <<



Assumption: lubrication approximation, quasi-steady state
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Neglect any effect of gravity because the film is so thin
Surface tension provides the dominant force for restoration of the uniform film
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Decay rate for the disturbance
A disturbance to an extremely thin film will decay very slowly

If one uses a lubricant of low viscosity,
1.Low viscosity lubricants will have a smaller load-bearing capacity, 
and it will be easier for the head to crash through the lubricant
2.Since the high centrigugal force tends to produce a radial flow of 
lubricant off the disk
-> design of new lubricants is important (i.e. that bond chemically to the 
topmost solid layer of the disk
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