
Chapter 3

Forces on, and within, a flowing medium



Shear stress / momentum flux
Force per unit area upon which it acts
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Viscosity: the property of a fluid that determines the ease with which elements 
of the fluid may be moved relative to one another through the action of some 
external force.

Newtonian fluid: any fluid that obeys this linear relationship

Momentum flux: the rate at which momentum crosses a boundary per unit area
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Problem solving and modeling

1. Identify and describe the phenomenon of interest.
2. Give a clear statement of the goals of the model. (What is 

expected from the model?)
3. State clearly the assumptions you choose to make regarding the 

physics and the geometry. Your choices define your model.
4. Apply the appropriate physical (mechanical, thermodynamical) 

principles.
5. Solve the resultant equations.
6. Compare the predictions of your model to reality. (Do an 

experiment, or find a set of appropriate and reliable experimental 
data.)

7. If necessary, modify the assumptions in the hope of improving the 
degree to which your model mimics reality.



Laminar flow through a tube
The phenomenon

Goal: develop a model for the relationship of the pressure difference to the flowrate.

Assumptions

- The tube is of uniform circular cross section along its axis.
- The fluid is Newtonian and incompressible. (density is not a function of 
pressure.)
- The flow is steady state, laminar and unidirectional (the velocity vector has 
only the single component), and fully developed. (the flow field does not vary 
along the tube axis.)

- The axis of the tube is collinear with the gravity vector.
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Physical principles
Conservation of mass and conservation of momentum

(any changes in momentum must be offset by net forces)Shear force at r
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+ direction of the coordinate axis, we use a + sign 
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Mass conservation

- differential volume flow rate drrυdQ z π2=

- the rate of flow of mass into the volume

- the rate of flow of mass out of the volume
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Momentum conservation
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Governing equation
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the flow field does not vary down the z axis.
velocity gradient and stress are not a function of z.

laminar and unidirectional flow means no radial flow.
no pressure variation in the radial direction.
pressure gradient does not depend on r.
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Laminar flow through a lubricated tube

to reduce the pressure
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No slip BC’s at wall and at the interface
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Continuous shear stress
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Goal: to investigate the possibility of increasing the flow rate through a tube by 
providing a lubricating layer of a second fluid at the wall of the tube
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What if the thin film is unstable?

II

I

M
R
h

μ
μη == ,



Engineering design
Task: design a capillary viscometer that will be useful for fluids with viscosities of 
the order of 1000 poise

Interpretation: specify values for R and L of the capillary, and estimate the 
required pressure to operate the viscometer

Conceptual design



Design equation
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Constraints: laminar, fully developed, isothermal, Newtonian, no end effect
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Rough design: order of magnitude estimates
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Evaluation: based on these rough numbers, do we need to modify any of the 
choices we made?                 Pressure is too high
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Annular flow

Pressure driven flow Drag flow

Confined flow between 
two cylinders Motion of a cylinder 

of finite length



Annular flow in a closed container

Ignore the flow at the ends
Over most of the length, the flow is 
strictly axial laminar flow (L>>R)
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No net flow across any surface normal to the z axis
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Annular flow in an open tube
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Annular drag flow
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Design of a wire coating die

Goal: to find the relationship between the downstream coating thickness and 
the other parameters that characterize the performance of the system

Axial annular drag flow

Steady state, isothermal,  Newtonian

Mass flow rate of coating

Mass flow rate due to the drag 
flow through the die
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Thickness can be varied only 
through changes in the 
geometry of the die.

What if coating thickness is not exactly at the desired level?
- impose a postive pressure on the fluid upstream of the die
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Maximum shear stress in a wire coating die
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The viscosity of fluids
The resistance a fluid exhibits to being deformed by the imposition of stresses
unit: centipoise, Pa.s
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Motion of a planar sheet through a 
submerged restriction

Neglect the flow near the entrance and exit
Unidirectional laminar, fully developed, Newtonian
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Force balance
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Divide by the volume dxdydz and take the limit as the volume shrinks to 
a point within the fluid
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Motion of a wetted planar sheet through 
a restriction

Moving sheet is coated with a thin flim of viscous liquid
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If the weight of the confined liquid is very 
small compared to the shear force, the 
velocity profile is close to that of the fully 
submerged case, and gravity does not 
alter the flow field.
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