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Solution Thermodynamics : theorySolution Thermodynamics : theorySolution Thermodynamics : theorySolution Thermodynamics : theory

■ Objective 

: lay the theoretical foundation for applications of thermodynamics to gas 
mixture and liquid solution

○ Most of chemical process undergo composition changes by mixing separation.

=> compositions become essential variable along with T and P.

○ Fundamental property relation become more comprehensive than eqn. (6.10) 

dG = VdP – SdT.



11.1 Fundamental Property Relation11.1 Fundamental Property Relation11.1 Fundamental Property Relation11.1 Fundamental Property Relation

○ Eqn. (6.6) d(nG) = (nV)dP – (nS)dT for closed system of single phase
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○ For a single-phase, open system

nG = f ( P, T, n1, n2, ….)
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By definition chemical potential of species i in the mixture 
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For special case of one mole of solution n=1, ni = xi 
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From (11.3)
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※ Gibbs energy plays a role of a generating function, providing the means for 

calculation of all other thermodynamic properties by simple mathematical 

operations.



11.2 The Chemical Potential and Phase 11.2 The Chemical Potential and Phase 11.2 The Chemical Potential and Phase 11.2 The Chemical Potential and Phase EquilibriaEquilibriaEquilibriaEquilibria

■ Closed systems consisting of two phase in equilibrium

each individual phase is open to the other => mass transfer occur b/w phases
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at equilibrium
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Eqn.(11.2) applies to each phase

Because two phases are in equilibrium -> T and P is uniform

Change of total Gibbs energy = sum of two equation 
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At equilibrium μof each phase is same

Thus, multiple phase at same T&P are in equilibrium when the chemical potential of

each species is the same in the all phase
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11.3 Partial Properties11.3 Partial Properties11.3 Partial Properties11.3 Partial Properties

■ Partial property is defined by 
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Chemical potential is partial molar property of Gibbs Energy

※ Equations relating Molar and Partial molar properties 

○ From the knowledge of the partial properties, we can calculate solution 

properties or we can do reversely.

○ Total thermo properties of homogeneous phase are functions of T, P and the 

numbers of moles of the individual species which comprise the phase

(11-7)
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The total differential of nM is 
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The terms containing “n” are collected separated from those containing dn to yield
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Multiply Egn.(11.11) by n yield 
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(11.10) -> special case of Eqn (11.9) by setting n=1

(11.11), (11.12) -> summability relations

=> allow calculation of mixture from partial property  



From Egn (11.11) 

∑ ∑
i i

iiii dxMMdxdM +=

∑
i

iix,Px,T 0dMx-dT)
T∂

M∂
(dP)

P∂

M∂
( =+

∑
i

ii 0Mdx = (11-14)

(11-13)

∑ ii MxM =

Compare this with (11.10)

=> Gibbs/Duhem equation

at const T, P



■ Rationale for partial property

=> Solution property is sum of its partial properties∑ ii MdxM =
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■ Summary of partial property

1. Definition
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=> partial properties of species in solution => dependent one another



■ Partial properties in binary solutions 
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So, from the solution properties as a function of composition (at const T, P)

=> Partial properties can be calculated



G/D can be written in derivative form
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=> Plots of                          vs x1 => horizontal as each species approach purity 



■ Relations among partial properties 
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Apply criterion of exactness for differential expression

※ Property relations used in const. composition solution has their counterpart

equations for partial properties

For example,    H = U + PV,   for n mole

nH = nU + P(nV)

Differentiation with respect to ni at const T, P, nj
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11.4 Ideal Gas Mixtures11.4 Ideal Gas Mixtures11.4 Ideal Gas Mixtures11.4 Ideal Gas Mixtures

※ Ideal gas mixture model : Basis to build the structure of solution thermodynamics 
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=> All ideal gas, whether pure or mixture have same 

molar volume at the same T, P
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since 

=> partial molar volume = pure species molar volume = mixture molar volume

Molar volume of Ideal Gas :

※ Partial molar volume of species i in ideal gas mixture
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Partial pressure of ideal gas for n mol of ideal gas 
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In ideal gas, thermodynamic properties independent of one another

※ Gibbs theorem
A partial molar property (except volume) of a constituent in an ideal gas mixture is 

equal to the corresponding molar property of the species as a pure ideal gas but 

at a pressure equal to its partial pressure
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※ H of Ideal Gas => independent of P

)P,T(H)P,T(H)P,T(H∴ ig

ii

ig

i

ig

i ==

ig

i

ig

i HH∴ = ->  ①①①① (11.22)

dTCH P=

※ S of an ideal gas -> dependent on P and T
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Integration from Pi to P i
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For the Gibbs Energy of ideal gas mixture
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(enthalpy charge of mixing) = 0

=> no heat transfer for ideal gas mixing

(entropy charge of mixing) > 0 

=> agree with second law,  mixing is irreversible
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Applying summability relation


