Thermodynamics II

Department of Chemical Engineering

Prof. Kim, Jong Hak

Solution Thermodynamics : theory

■ Objective

: lay the theoretical foundation for applications of thermodynamics to gas mixture and liquid solution

- Most of chemical process undergo composition changes by mixing separation.
 => compositions become essential variable along with T and P.
- \bigcirc Fundamental property relation become more comprehensive than eqn. (6.10) dG = VdP SdT.

11.1 Fundamental Property Relation

 \bigcirc Eqn. (6.6) d(nG) = (nV)dP – (nS)dT for closed system of single phase

$$\left[\frac{\partial(nG)}{\partial P}\right]_{T,n} = nV \quad \text{and} \quad \left[\frac{\partial(nG)}{\partial P}\right]_{P,n} = -nS$$

 \bigcirc For a single–phase, open system

 $nG = f(P, T, n_1, n_2,)$

$$d(nG) = \left[\frac{\partial(nG)}{\partial P}\right]_{T,n} dP + \left[\frac{\partial(nG)}{\partial T}\right]_{P,n} dT + \sum_{i} \left[\frac{\partial(nG)}{\partial n_{i}}\right]_{P,T,n_{j}} dn_{i}$$

By definition chemical potential of species i in the mixture

$$\mu_{i} = \sum_{i} \left[\frac{\partial (nG)}{\partial n_{i}} \right]_{P,T,n_{j}} dn_{i}$$
 (11.1)

$$\therefore d(nG) = (nV)dP - (nS)dT + \sum_{i} \mu_{i}dn_{i} \qquad (11.2)$$

For special case of one mole of solution n=1, $n_i = x_i$

$$dG = VdP - SdT + \sum_{i} \mu_{i} dx_{i}$$

$$G = G(T, P, x_{1}, x_{2}, \dots, x_{i}, \dots)$$
(11.3)

※ Gibbs energy plays a role of a generating function, providing the means for calculation of all other thermodynamic properties by simple mathematical operations.

11.2 The Chemical Potential and Phase Equilibria

Closed systems consisting of two phase in equilibrium each individual phase is open to the other => mass transfer occur b/w phases

Eqn.(11.2) applies to each phase

$$d(nG)^{\alpha} = (nV)^{\alpha} dP - (nS)^{\alpha} dT = \sum \mu_{i}^{\alpha} dn_{i}^{\alpha}$$
$$d(nG)^{\beta} = (nV)^{\beta} dP - (nS)^{\beta} dT = \sum \mu_{i}^{\beta} dn_{i}^{\beta}$$

Because two phases are in equilibrium –> T and P is uniform Change of total Gibbs energy = sum of two equation $d(nG)^{\alpha} + d(nG)^{\beta}$

$$d(nG) = (nV)dP - (nS)dT + \sum \mu_i^{\alpha} dn_i^{\alpha} + \sum \mu_i^{\beta} dn_i^{\beta}$$
$$(nM = (nM)^{\alpha} + (nM)^{\beta})$$

at equilibrium $\sum \mu_i^{\alpha} dn_i^{\alpha} + \sum \mu_i^{\beta} dn_i^{\beta} = 0$

by mass conservation, $dn_i^{\alpha} + dn_i^{\beta} = 0$

$$\sum (\mu_i^{\alpha} - \mu_i^{\beta}) dn_i^{\alpha} = 0$$

At equilibrium μ of each phase is same $(\mu_i^{\alpha} = \mu_i^{\beta})$

Thus, multiple phase at same T&P are in equilibrium when the chemical potential of each species is the same in the all phase

$$\therefore \mu_{i}^{\alpha} = \mu_{i}^{\beta} = \dots = \mu_{i}^{\pi}$$
 (i = 1, 2, 3..., N)

11.3 Partial Properties

 \blacksquare Partial property $\overline{\mathbf{M}_{i}}$ is defined by

$$\overline{\mathbf{M}_{i}} \equiv [\frac{\partial(\mathbf{nM})}{\partial \mathbf{n}_{i}}]_{\mathbf{P},\mathbf{T},\mathbf{n}_{j}} \qquad \textbf{(11-7)}$$

Chemical potential is partial molar property of Gibbs Energy

$$\mu_{i} = \left(\frac{\partial(\mathbf{n}G)}{\partial \mathbf{n}_{i}}\right)_{\mathbf{P},\mathbf{T},\mathbf{n}_{j}} = \overline{G_{i}}$$

*** Equations relating Molar and Partial molar properties**

- \odot From the knowledge of the partial properties, we can calculate solution properties or we can do reversely.
- \odot Total thermo properties of homogeneous phase are functions of T, P and the numbers of moles of the individual species which comprise the phase

$$nM = \mu(T, P, n_1, n_2, ..., n_i)$$

The total differential of nM is

$$d(nM) = \left[\frac{\partial(nM)}{\partial P}\right]_{T,n} dP + \left[\frac{\partial(nM)}{\partial T}\right]_{P,n} dT + \sum_{i} \left[\frac{\partial(nM)}{\partial n_{i}}\right]_{P,T,n_{j}} dn_{i}$$

$$d(nM) = n(\frac{\partial(nM)}{\partial P})_{T,x}dP + n(\frac{\partial M}{\partial T})_{P,x}dT + \sum_{i} \overline{M_{i}}dn_{i} \quad (11-9)$$

$$n_i = x_i n \rightarrow dn_i = x_i dn + n dx_i$$
$$d(nM) \equiv n dM + M dn$$

$$\therefore ndM + Mdn = n(\frac{\partial M}{\partial P})_{T,x}dP + n(\frac{\partial M}{\partial T})_{P,x}dT + \sum M_i(x_i dn + ndx_i)$$

The terms containing "n" are collected separated from those containing dn to yield

$$[dM - (\frac{\partial M}{\partial P})_{T,x} dP - (\frac{\partial M}{\partial T})_{P,x} dT - \sum M_i dx_i]n + [M - \sum_i x_i M_i]dn = 0$$

$$\therefore dM = (\frac{\partial M}{\partial P})_{T,x} dP + (\frac{\partial M}{\partial T})_{P,x} dT + \sum_i M_i dx_i \quad (11-10)$$

$$M = \sum_i x_i \overline{M_i} \quad (11-11)$$

Multiply Egn.(11.11) by n yield

$$nM = \sum_{i} n_{i}M_{i}$$
 [11-12]

From Egn (11.11) $M = \sum x_i \overline{M_i}$

$$dM = \sum_{i} x_{i} d\overline{M_{i}} + \sum_{i} \overline{M_{i}} dx_{i}$$
 Compare this with (11.10)

$$\left(\frac{\partial \mathbf{M}}{\partial \mathbf{P}}\right)_{\mathrm{T,x}} d\mathbf{P} + \left(\frac{\partial \mathbf{M}}{\partial \mathbf{T}}\right)_{\mathrm{P,x}} d\mathbf{T} - \sum_{\mathrm{i}} x_{\mathrm{i}} d\mathbf{M}_{\mathrm{i}} = 0 \qquad \text{[11-13]}$$

=> Gibbs/Duhem equation

at const T, P
$$\sum_{i} x_{i} d\overline{M_{i}} = 0$$
 [11-14]

Rationale for partial property

 $M = \sum x_i d\overline{M_i} \quad \Rightarrow \text{Solution property is sum of its partial properties}$

$$\begin{split} &\lim_{x_i \to 1} M = \lim_{x_i \to 1} \overline{M_i} = M_i \quad \text{(in the limit as a solution become pure in species i)} \\ & \text{By definition} \quad \lim_{x_i \to 0} \overline{M_i} = M_i^\infty \end{split}$$

Summary of partial property

1. Definition $\overline{M_{i}} = \left[\frac{\partial(nM)}{\partial n_{i}}\right]_{P,T,n_{j}} \Rightarrow$ yield partial properties from total property 2. summability $M = \sum_{i} x_{i} \overline{M_{i}} \Rightarrow$ yield total properties from partial properties 3. Gibbs/Duhem $\sum_{i} x_{i} dM_{i} = \left(\frac{\partial M}{\partial P}\right)_{T,x} dP + \left(\frac{\partial M}{\partial T}\right)_{P,x} dT$

=> partial properties of species in solution => dependent one another

Partial properties in binary solutions

For binary solution (system), From summability relations $M = \sum x_i d\overline{M_i}$ $M = x_1 \overline{M_1} + x_2 \overline{M_2}$ (a) \Rightarrow $dM = x_1 d\overline{M_1} + \overline{M_1} dx_1 + x_2 d\overline{M_2} + \overline{M_2} dx_2$ (b) at constant T, P by Gibbs/Duhem Egn.

$$x_1 d\overline{M_1} + x_2 d\overline{M_2} = 0$$
 (c)

So, from the solution properties as a function of composition (at const T, P) => Partial properties can be calculated G/D can be written in derivative form

$$x_1 \frac{dM_1}{dx_1} + x_2 \frac{dM_2}{dx_1} = 0 \qquad \Rightarrow \qquad \frac{d\overline{M}_1}{dx_1} = -\frac{x_2}{x_1} \frac{d\overline{M}_2}{dx_1}$$

=> When $\overline{M_1} \& \overline{M_2}$ are plotted vs $x_1 \Rightarrow$ sign of slope is opposite

Moreover from this Equation

$$\lim_{x_1 \to 1} \frac{d\overline{M_1}}{dx_1} = 0 \qquad , \qquad \lim_{x_2 \to 1} \frac{d\overline{M_2}}{dx_1} = 0$$

=> Plots of $\overline{M_1}$ and $\overline{M_2}$ vs x_1 => horizontal as each species approach purity

Relations among partial properties

$$d(nG) = (nV)dP - (nS)dT + \sum_{i} \mu_{i}dn_{i} \quad (\mu_{i} = \overline{G_{i}})$$
$$\Rightarrow d(nG) = (nV)dP - (nS)dT + \sum_{i} \overline{G_{i}}dn_{i}$$

Apply criterion of exactness for differential expression

$$(\frac{\partial V}{\partial T})_{P,n} = -(\frac{\partial S}{\partial P})_{T,n} \qquad (\frac{\partial G_i}{\partial P})_{T,n} = -(\frac{\partial (nV)}{\partial n_i})_{P,T,n_j} \Rightarrow \overline{V_i}$$
$$(\frac{\partial \overline{G_i}}{\partial T})_{P,n} = -(\frac{\partial (nS)}{\partial n_i})_{P,T,n_j} \Rightarrow -\overline{S_i}$$

- * Property relations used in const. composition solution has their counterpart equations for partial properties
 - For example, H = U + PV, for n mole nH = nU + P(nV)

Differentiation with respect to n_i at const T, P, n_j

$$\begin{bmatrix} \frac{\partial(nH)}{\partial n_i} \end{bmatrix}_{P,T,n_j} = \begin{bmatrix} \frac{\partial(nU)}{\partial n_i} \end{bmatrix}_{P,T,n_j} + P\begin{bmatrix} \frac{\partial(nV)}{\partial n_i} \end{bmatrix}_{P,T,n_j} \implies \overline{H_i} = \overline{U_i} + P\overline{V_i}$$
$$d\overline{G_i} = \overline{V_i}dP - \overline{S}dT$$

11.4 Ideal Gas Mixtures

- ** Ideal gas mixture model : Basis to build the structure of solution thermodynamics Molar volume of Ideal Gas : $V = \frac{RT}{P}$ => All ideal gas, whether pure or mixture have same molar volume at the same T, P
- * Partial molar volume of species i in ideal gas mixture

$$\overline{V}_{i}^{ig} = \left[\frac{\partial(nV^{ig})}{\partial n_{i}}\right]_{T,P,n_{j}} = \left[\frac{\partial(nRT/P)}{\partial n_{i}}\right] = \frac{RT}{P}\left(\frac{\partial n}{\partial n_{i}}\right)_{n_{j}} = \frac{RT}{P}$$

since $n = n_{i} + \sum n_{j}$

=> partial molar volume = pure species molar volume = mixture molar volume

$$\overline{V}_{i}^{ig} = V_{i}^{ig} = V^{ig} = \frac{RT}{P}$$

Partial pressure of ideal gas for n mol of ideal gas

$$P = \frac{nRT}{V^t}$$

for species i , $P_i = \frac{n_i RT}{V^t}$ (since $V^t = V_i^t$ in ideal

$$\frac{P_i}{P} = \frac{n_i}{n} = y_i \qquad \therefore P_i = yP$$

In ideal gas, thermodynamic properties independent of one another

*** Gibbs theorem**

A partial molar property (except volume) of a constituent in an ideal gas mixture is equal to the corresponding molar property of the species as a pure ideal gas but at a pressure equal to its partial pressure

$$\overline{M}_{i}^{ig}(T,P) = M_{i}^{ig}(T,P_{i})$$
 [11.21]

**** H of Ideal Gas => independent of P**

$$H = C_{P} dT$$

$$\therefore \overline{H}_{i}^{ig}(T, P) = H_{i}^{ig}(T, P_{i}) = H_{i}^{ig}(T, P)$$

$$\therefore \overline{H}_{i}^{ig} = H_{i}^{ig} \rightarrow \textcircled{1}$$
[11.22]

$$dS^{ig} = C_{P}^{ig} \frac{dT}{T} - R \frac{dP}{P} \quad \text{(6.24)}$$

at const T. $dS_{i}^{ig} = -Rd\ln P = -R \frac{dP}{P}$
Integration from P_i to P $S_{i}^{ig}(T,P) - S_{i}^{ig}(T,p_{i}) = -R\ln \frac{P}{p_{i}} = -R\ln \frac{P}{y_{i}P} = R\ln y_{i}$
 $\therefore S_{i}^{ig}(T,p_{i}) = S_{i}^{ig}(T,P) - R\ln y_{i} \quad \text{Since,} \quad \overline{S}_{i}^{ig}(T,P) = S_{i}^{ig}(T,P_{i}) \quad \text{Gibbs theorem}$
 $\overline{S}_{i}^{ig} = S_{i}^{ig} - R\ln y_{i} \quad \rightarrow @ \quad \text{(11.23)}$

For the Gibbs Energy of ideal gas mixture

$$G^{ig} = H^{ig} - TS^{ig} \Rightarrow G^{ig} = H^{ig} - TS_i^{ig}$$

$$\overline{G}_i^{ig} = H_i^{ig} - TS_i^{ig} + RT \ln y_i \quad \text{(by using egn. () (2))}$$
or $\mu_i^{ig} \equiv \overline{G}_i^{ig} = G_i^{ig} + RT \ln y_i \rightarrow 3 \quad (11.24)$

By summability eqn $(M = \sum x_i \overline{M_i})$

$$H^{ig} = \sum y_i H_i^{ig} \xrightarrow{\rightarrow 4} G^{ig} = \sum y_i S_i^{ig} - R \sum y_i \ln y_i \xrightarrow{\rightarrow 5} G^{ig} = \sum y_i G_i^{ig} + RT \sum y_i \ln y_i \xrightarrow{\rightarrow 6} G^{ig}$$

• $H^{ig} - \sum y_i H_i^{ig}$ (enthalpy charge of mixing) = 0

=> no heat transfer for ideal gas mixing

• $S^{ig} - \sum y_i S_i^{ig} = R \sum y_i \ln \frac{1}{y_i}$ (entropy charge of mixing) > 0 => agree with second law, mixing is irreversible

Alternative expression for $\ \mu_i^{\rm ig}$

$$dG_i^{ig} = V_i^{ig} dP - S_i^{ig} dT \Longrightarrow VdP \quad \text{(at const T)}$$
$$\therefore dG_i^{ig} = V_i^{ig} dP = \frac{RT}{P} dP = RTd \ln P$$

By integration

$$G_{i}^{ig} = \Gamma_{i}(T) + RT \ln P$$
 (11.28)

$$\therefore \mu_i^{ig} = \Gamma_i(T) + RT \ln(y_i P)$$
(11.29)

Applying summability relation

$$\therefore G^{ig} = \sum y_i \Gamma_i(T) + RT \sum y_i \ln(y_i P) \quad (11.30)$$

