Chapter 9. Assembly and Consolidation of Nanoparticles



9.1 Introduction
* Use of nanoparticles
- Dispersed state: paints, filler, cosmetics, homogenous or dispersed catalysts
- Consolidated state
-porous: catalysts, sensor, electrodes( directly, or indirectly)
-densified: ultrahard alloy, fine ceramics, ceramic engines
-ordered: electronic, optical, optoelectronic devices
* Consolidation:
- size enlargement of nanoparticles
* Methods of consolidation
- forming by using templates usually
3-D: die casting, extrusion, spray drying
2-D: deposition on substrate surface

1-D: use of linear template, particle dipoles™



* Source of consolidation
Particle-to-particle interaction or particle-to-substrate interaction
- Long-range force for consolidation
- Brownian motion
- capillary force
- fluid force (inertia, shear)

- external force (electrical, pressure, gravitational)
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9.2 Mechanical Forming
(1) Pressure forming
- Pressing of masses through openings of sieves, rollers, or dies
- Solid bridges : formed by compressive deformation at the point of contact

- Dry or moist binder and lubricants : used for powders which are difficult for
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(2) Granulation
* Granulation process:
wetting — growth — granule consolidation
nucleation/coalescence/layering
- Interparticle collision by tumbling, mixing and turbulent motion
- Often requires moisture or other binding agents

- Not very strong agglomeration without after-treatment (drying, sintering)

* Methods of granulation
- Tumbling type
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- Fluidization type

Tumbling—type granulators (a) disc (b) cone (c) drum
a.Feed+water(binder); b.green agglomerates; c.recycle
a.Feed+water(binder); b.green agglomerates; c.recycle
(undersize); d.sieve



Fluidized—bed granulator
a.mixing screw, b.distributing rolls, c.venturi fluidizer, d.sieve,
e.cyclone, f.feed, g.granulates, h.hot gas, i.exhaust air,
k.recycled undersize



9.3 Porous Structure Materials by Sol-gel-drying Processes

(1) Aerogels and xerogels

* Drying
: : 1 1
- due to capillary force in the pores  p,=-0,,c080| — +R—
1 2
under ambient conditions — collapsed dried gel — xerogel
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- C]/‘iticalpoints Solvents Formula .(CC) P.(MPa)
Water H,O 374.1 22.04
Carbon dioxide CO, 31.0 737
Freon 116 (CF3), 19:7 2.97
Acetone (CH;),0 235.0 4.66
Nitrous oxide N,O 36.4 7.24
Methanol CH;0H 2394 8.09

Ethanol C,H;OH 243.0 6.3




- Solvent exchange
- Characteristics of aerogels
Porosity: 75-99%
Specific surface area: ~ >1,000m?/g
cf. porosity of xerogel: 1-50%

- very light, transparent

- used in catalysts, sensor, electrodes, thermally and/or electrically insulating

materials




(2) Mesoporous materials
- starting from precursor+ solvent+ catalyst+ surfactant
- aligning surfactant molecules during solvent evaporation

- hydrolysis and condensation like sol-gel process on head side of the alignment

Hydrophobic tail
Hydrophilic head

Anionic surfactant
molecule

S,
@ ®4— Counterion

—=> G => &

(b)

Cylindrical lamellar
type
micelle

TiO2
mMesoporous
structure made
with urea




(3) Sol-derived films
- simultaneous evaporation and gel formation
- crack formation possible by rapid drying and incompatibility between coating and

substrate

Spin coating

- delivery of sol onto the substrate center — spin-up — spin-off — evaporation

- Uniform films for Newtonian fluid

- Thickness H:[l—pAO j[ 3,Lée 2]
Pi \2p, @

0
where Pa, P4 present and initial mass of volatile solvent per unit volume

U : viscosity of liquid
e: evaporation rate

@ : angular velocity



Dip coating

- evaporation and gel formation
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9.4 Sol spray drying method
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- Hierarchical structures

Effect of primary particle size on morohology of
final particles. Experimental condition. (a) CS—-1,
(b) CS-2, (c) CS-3 and

(d) C5-4, at 200.C.
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(2) Sol-spray deposition
h Supply of sol
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- Ordinary spray deposition *
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(3) Chemical aerosol deposition
- spray — solvent evaporation — deposition

- deposition occurred mainly by diffusion of solute molecules and/or partially

dried droplets T Supply of

solution droplets
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(4) Electrospinning

- electrospray of linear polymer+ precursor solution followed by calcination
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9.5 Direct deposition in fluid
(1) Electrophoresis of sols
- Movement of surface charged particles
- packing density <74%
- depends on particle concentration, zeta potential, applied electric field

- slow arrival of nanoparticles onto the surface results in high packing density ...



(2) Impaction of nanoparticle beams

- particle deposition by impact of fluid jet |
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- Cascade hypersonic impactors

E ~N/ Orifice diameter: 2.26 mm

§ - 74 Lenses: 47 mm apart

8 D'_ N jﬁi\ Deposition: 3mm from nozzle exit

3 5 : i}f W Impact velocity: 200-300m/s
345Pa ’ o 1Pa
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Predicted flow streamlines (top) and particle
trajectories (bottom) in the aerodynamic lens
assembly.

F. Di Fonzo, A. Gidwani, M. H. Fan, D. Neumann, D. I. lordanoglou, J.
V. R. Heberlein, P. H. McMurry, and S. L. Girshicka), N. Tymiak and
W. W. Gerberich, and N. P. Rao, Appl. Phys. Lett., Vol. 77, No. 6, 7
August 2000
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9.6 Formation of dense structure: sintering
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* Driving force of sintering:

- Reduction in overall surface energy :Reduction in surface area relative to its

volume

* Four stages of sintering
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Stage Process Surfi{[:ij.rau Densification Coarsening
Adhesion Contact Minimal, unless | None Mone
formation compacted at
high pressures
Initial Meck growth Significant, up to | Small at first Minimal
50% loss
Intermediate Pore rounding Mear total loss of | Significant Increase in grain
and elongation open porosity size and pore size
Final Pore closure, Negligible Slow and Extensive grain
final further loss relatively and pore growth
densification minimal




(1) Mechanism of sintering

- Surface transport: neck growth without shrinkage or densification
Al

—=0
[
where Al: increase in length of particle
[: initial length of particle

- surface diffusion: lowest activation energy, predominant at low temperature

- vapor diffusion: evaporation from convex surface to concave surface
- bulk transport: net particle movement leading to shrinkage and densification

Accompanying shrinkage in dimension

- lattice diffusion: dominant for crystalline materials

- cross grain boundary diffusion: dominant for crystalline materials

- viscous flow: dominant for amorphous materials
* Reactive sintering: solid-to-solid (solid phase) reaction

- Formation of interface product layer

e.g. Pozzolanic reaction : 5i0, + Ca(OH), in water at elevated pressure



(2) Sintering of nanoparticles
* Advantages of nanoparticle sintering
- High rate of sintering

- Lowering of sintering temperature
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respect to temperature

From left to right: 400, 600, 800°C
e.g. W+ 0.1-0.5% of Ni nanoparticles, sintering temperature to 1200~1300°C.

sintering of larger particles

* Disadvantages of nanoparticle sintering

- Aggregation results in formation of pores, change in required dimension or
deformation of the sintered body.

= High-pressure sintering/ Fast-firing/ Plasma-assisted sintering

Chemical modification of the nanoparticle surface



9.7 Ordered consolidation by self assembly
Self assembly: a process by which components spontaneously assemble without the
requirement of external energy or information
(1) Building blocks
- Ordinary sols
- Monolayer protected (passivated) nanoparticles
- alkanethiol
- sulfide or sulfur containing biomaterials (DNA, proteins)
- Assembly: used for electronic, optoelectronic devices, biological chips...
- Colloidal crystals(>100nm)
- Monodisperse submicron particles (silica, latex)

- Assembly: used for photonic crystals, catalysts, sensors, electrodes...

Self f Si;nu_ltaneous or sufbsequent Template
assembly o infusion (growth) of metal or removal by
templates metal precursors

calcination



(2) 1-D assembly
Pore filling

* Ordered pores
- Anodized aluminum membrane
made by anodic oxidation of aluminum sheet in acid solutions...
- Capillary membranes: polycarbonate films bombarded by neutron beams

* Filling: capillary force, electrophoresis, pressure, chemical vapor deposition,

centrifugation

- high wettability, chemical inertness against pore wall, shrinkage control
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Deposition or attachment onto existing line templates

- Along line defect

- Defined steps on crystalline surfaces

- Existing nanowires

- Linear polymers
Copper wire 3nmwide and
50nm apart on astepped
Mo(110) surface—-STM

(3) 2-D assembly
* Deposition of building blocks by

Sn0O, self-assembled

- Electrophoresis
nanoparticles — gas sensor

- Electrostatic force

Anionic
Pulyeation water mlarﬁch wiler




- Bond linkage
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* Regular packing of equal spheres

88%
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(b) (c)
Void
Volume volume Coordi-

Types of of unit  of unit Void  Packing  nation
packing Figures cell cell fraction fraction number
Cubic (a) D} 0.48D§  0.4764  0.5236 6
Ortho- (b),(d) 0.87D}  0.34D§  0.3954 0.6046 8

rhombic
Tetragonal- (e) 0.75D  0.23D3  0.3019  0.6981 10

sphenoidal
Rhombo-  (c),(f) 0.41D§ 0.18D§  0.2595  0.7405 12

hedral

Dp, diameter of equal spheres.



