할로젠화 알킬의 제거반응

목차

- ∘ 제거반응
- ♥ E2반응
- 제거반응과 Cyclohexane의 형태
- 중수소 동위원소 효과
- ♥ E1반응
- 요약

제거반응

Substitution

Elimination

$$C - C + OH^- \longrightarrow C = C + H_2O + Br^-$$

이웃한 수소를 공격하여 HX를 제거하고 alkene 을 만드는 반응

제거반응

chanism of the E2 ution of an alkyl halide. e reaction takes place a single step through a nsition state in which double bond begins form at the same time H and X groups are ing.

> refer to Mechanisms & Movies

Base (B:) attacks a neighboring hydrogen and begins to remove the H at the same time as the alkene double bond starts to form and the X group starts to leave.

Neutral alkene is produced when the C-H bond is fully broken and the X group has departed with the C-X bond electron pair.

© 1984 JOHN MCMURRY

Zaitsev의 규칙

● 할로젠화 알킬로부터의 HX 제거반응에서 치 환이 많이 된 알켄이 주생성물이 된다.

E2 반응(elimination, bimolecular)

- 하이드록시 이온, 알콕시 이온과 같은 강한 염기와 반응시 일어남
- 준평면(periplanar) 기하구조로 반응함
- 이 이 하반응 속도식을 보인다.

반응속도 = k * [RX] * [Base]

- H와 X가 분자의 같은 쪽에 있는 신 준평면 (syn periplanar)
- H와 X가 분자의 반대쪽에 있는 안티 준평면 (anti periplanar)

The transition state for the E2 reaction of an alkyl halide with base. Overlap of the developing p orbitals in the transition state requires periplanar geometry of the reactant.

meso-1,2-Dibromo-1,2-diphenylethane (anti periplanar geometry)

(E)-1-Bromo-1,2-diphenylethylene

제거반응과 Cyclohexane의 형태

Dehydrochlorination of menthyl and neomenthyl chlorides. (a) Neomenthyl chloride loses HCI from its more stable conformation, but (b) menthyl chloride must first ring-flip before HCI loss can occur.

$$\begin{array}{c} \text{(a)} \quad H \quad \begin{array}{c} H \quad \text{Cl} \\ H_{3}C \\ H \end{array} \\ \begin{array}{c} \text{CH(CH_{3})}_{2} \end{array} \\ = \begin{array}{c} H_{3}C \\ \end{array} \\ \begin{array}{c} \text{CH(CH_{3})}_{2} \\ \end{array} \\ \begin{array}{c} \text{Fast} \\ \text{Na^{+} -OCH_{2}CH_{3},} \\ \text{ethanol} \end{array} \\ \end{array} \\ \begin{array}{c} \text{CH(CH_{3})}_{2} \end{array}$$

Neomenthyl chloride

3-Menthene

$$\begin{array}{c} \text{H} \\ \text{H}_{3}\text{C} \\ \text{H} \\ \text{H} \end{array} \begin{array}{c} \text{H} \\ \text{Cl} \\ \text{Cl} \end{array} = \begin{array}{c} \text{H}_{3}\text{C} \\ \text{CH}(\text{CH}_{3})_{2} \\ \text{CH}(\text{CH}_{3})_{2} \end{array} \begin{array}{c} \text{H}_{3}\text{C} \\ \text{CH}(\text{CH}_{3})_{2} \end{array} \\ \begin{array}{c} \text{2-Menthene} \end{array}$$

Menthyl chloride

중수소 동위원소 효과

Faster reaction

$$CH = CH_2$$
 $CH = CH_2$
 $CH = CH_2$

1-Bromo-2-phenylethane

Slower reaction

$$\begin{array}{c|c}
\hline
& D \\
C \\
\hline
& CD = CH_2
\end{array}$$

1-Bromo-2,2-dideuterio-2-phenylethane

Deuterium isotope effect:

같은 조건하에서 C-H결합은 C-D결합보 약하다

E1 반응(elimination, unimolecular)

- 흔히 치환 반응 및 제거 반응 생성물의 혼합 물로 얻어진다.
- 기하구조적 요건이 필요하지 않다.
- 중수소 동위원소 효과가 없다.
- 일차반응 속도식을 보인다.

반응속도 = k * [RX]

E1 반응

Mechanism of the E1 reaction. Two steps are involved, the first of which is rate-limiting, and a carbocation intermediate is present.

refer to Mechanisms & Movies Spontaneous dissociation of the tertiary alkyl chloride yields an intermediate carbocation in a slow, rate-limiting step.

Loss of a neighboring H^+ in a fast step yields the neutral alkene product. The electron pair from the C-H bond goes to form the alkene π bond.

$$CH_{3} - C - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$Rate-limiting$$

$$H_{3}C - H + C - C - H + C$$

Fast

© 1984 JOHN MCMURRY