Some comments on Grad, Div, Curl in Chap. 8

- Steepest Descent Method (Gradient Method) for optimization problems
see next slides

- Some basic formulas for grad, div, curl

V(fg) =t Vg+gvi
V(f /9)=(1/g°)(g¥f ~fVg)

V-(fv)=fV-v=v-Vf V-(vw)=w(V-v)=v-Vw
V-(fVg)=fV-Vg+Vg-Vf =fV*g+Vg- Vf
Vi =V.Vi

V*(fg) =gV °f +2Vf - Vg+f Vg
Vx(fv)=Vfxv+fVxv
V-(uxv)=v-(Vxu)-u-(Vxv)
Vx(Vf)=0

V-(Vxv)=0



- The form of grad, div, curl in curvilinear coordinates (see Appendix A3.4)
Special cases: cylindrical, spherical coordinates
(a) Cylindrical coordinates:

X=rcosf, y=rsing, z=z

r=4x?+y?, @=tan'(y/x), z=z
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or or ar . A‘
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and a;
a,=f{0)=3
ay+ 2.618 034a, + 6.854a, = f(2.618 034) = 5.236 61
a,=f'(0)=-3

Solving the three equations simultaneously, we get g, =3, a,=-3.and.a,=
1.4722. The minimum point of the parabolic curve using Eq. (5.31) is given as
& = 1.0189 and f(&) = 0.694 43. This estimate can be improved using an iteration
as before. .

Note that in the preceding an estimdte of the minimum point of the
function f(a«) can be found in only two function evaluations. Since the slope
£'(0)=¢®-d™ is known for multidimensional problems, no additional cacula-
tions are required to evaluate it at @ =0. ) ‘ ]

5.4 STEEPEST DESCENT METHOD

In the previous section we assumed that a search direction in the design space
is known and we tackled the problem of step size determination. In this and
subsequent sections we shall address the question of determination of the
search direction d. The basic requirement for d is that the cost function be
reduced if we move a small distance along the direction. This will be called the
descent direction. .

Several methods are available for determining a descent direction for
unconstrained optimization problems. The steepest descent method or the
gradient method is the simplest, the oldest and probably the best :known
numerical method for unconstrained optimization. The philosophy of the
method, introduced by Cauchy in 1847, is to find the direction d at the current
iteration in which the cost function f(x) decreases most rapidly, at least locally.
It is due to this philosophy that the method is called the steepest. descent
search technique. Also, properties of the gradient vector are used iin the
iterative process which is the reason for its alternate namie: the gradient
method. The steepest descent method is a first-order method since only the
gradient of the cost function is calculated and used to evaluate the search
direction. Later, we shall discuss second-order methods where Hessian of the
function will be used in determining the search direction. We shall first study
properties of the gradient vector of a scalar function before sta_ting an
algorithm for the method. ' Cob

5.4.1 Properties of Gradient Vector

The gradient vector of a scalar function f(x1, %3, - -, X,) was defined in
Chapter 3. Just as a reminder, we define it again as the column vector:

_[of o o).
vjr_[axl ax,'“ax,,] - 5.32)
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Surface f(x) = const.
FIGURE 5.11
Gradient vector for the surface
f(x) = constant at the point x*.

To simplify the notation, we shall use vector ¢ to represent gradient of the
scalar function f(x); that is, ¢; = 3f /ox;. We shall use a superscript to denote
the point at which this vector is calculated, as

F M)
¢® = o(x¥) = [—]
)= | L (5.33)
The gradient vector has several properties that are used in the steepest descent
method. Since proofs of the properties are also quite instructive, they are also
given.

Property 1. The gradient vector ¢ of a function f(x,,x,,...,x,) at the point
x*=(x],x3,...,x,) is orthogonal (normal) to the tangent plane for the surface
f(x,, xs, . . ., x,) = constant.

This is an important property of the gradient vector shown graphically in
Fig. 5.11. It shows the surface f(x) = constant; x* is a point on the surface; C is
any curve on the surface through the point x*; T is a vector tangent to the curve
C at the point x*, wm is any unit vector; and c is the gradient vector at x*.
According to the above property, vectors ¢ and T are normal to each other, i.e.
their dot product is zero, ¢- T =0.

Proof. To show this, we take any curve C on the surface f(x,, x,...,x,)=
constant, as shown in Fig. 5.11. Let the curve pass through the point
x*=(x{,x},...,x}). Also, let s be any parameter along C. Then a unit tangent
vector T along C at the point x* is given as

TN

“las a5 as @)
Since f(x) = constant, the derivative of f along the curve C is zero, i.e.
d
d_.f =0  (directional derivative of f)
Or, using the chain rule of differentiation
o_ofxm, |
ds 3x, 8s '“+ax,. as_o ®)
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Writing Eq. (b) in the vector form after identifying 8f/9x; and 3x,/3s (from Eq.
a) as components of the gradient and the unit tangent vectors, we obtain

¢-T=0, or ¢/T=0

Since the dot product of the gradient vector ¢ with the tangential vector T is zero,
the vectors are normal to each other. But T is any tangent vector at x*, so ¢ is
orthogonal tg the tangent plane for the surface f(x) = constant at the point x*. ||

Property 2. The second property is that gradient represents a direction of
maxi=wum rate of increase for the function f(x) at the point x*.

Proof. To show this, let u be a unit vector in any direction that is not tangent to
the surface. This is shown in Fig. 5.11. Let ¢t be a parameter along u. The
derivative of f(x) in the direction u at the point x* (i.e. directional derivative of
f) is given as

df . f(x+ew)—f(x)
A € e

where ¢ is a small number. Using Taylor series expansion

f(x+£u)=f(x)+£[u.g:+u2%f2+. .+, ‘3{;

] + 0(g%)

where u, are components of the unit vector u and 0(¢?) are terms of order £°.
Rewriting the foregoing equation,

fat e —f) = 3 u L+ 0(e) @
i=1 i
Substituting Eq. (d) into Eq. (c) and taking the indicated limit, we get
i _< o r
2_ 2 _cou= e
pr zl u; o cru=c’u (e)
Using the definition of the dot product for Eq. (e),
d)
I el il cos 6 ®

where 8 is the angle between the ¢ and w vectors. The right-hand side of Eq. (f)
will have extreme value when @ = 0 or 180°. When 6 =0, vector u is along ¢ and
cos @ =1. Therefore, from Eq. (f), df/dt represents the maximum rate of
increase for f(x) when 8 =0. Similarly, when 6 =180°, vector u poi_nts in the
negative ¢ direction. Therefore, from Eq. (f), df /dt represents the maximum rate
of decrease for f(x) when 8 = 180°. il

According to the foregoing property of the gradient vector, if we need to
move away from the surface f(x)=constant, the function increases most
rapidly along the gradient vector compared to a move in any other direction.
In Fig. 5.11, a small imove along the direction ¢ will result in a larger increase
in the function compared to a similar move along the direction u. Of course,
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any small move along the direction T results in no change in the function, since
T is tangent to the surface.

Property 3. The maximum rate of change of f(x) at any point x* is the magnitude
of the gradient vector.

Proof. Since u is a unit vector, the maximum value of df (dt from Eq. (f) is given
as

d
max ] = ey

However, for =0, u is in the direction of the gradient vector. Therefore, the

magnitude of the gradient represents the maximum rate of ch
a7l change for thtlel

_ These prop;rties §how that gradient vector at any point x* represents a
direction of maximum increase in the function f(x) and the rate of increase is

the magnitude of the vector. Gradient is therefore called a directi
ascent for the function f(x). irestion of stecpest

E'n.}:‘:ss(;: therIiza_ﬂon of properties of the gradient vector. Verify the
g"?l:(o_ﬁ, 3 € gradient vector for the function f(x) =25x2+ x2 at the point

; Sa;ltiou Figure 5.1% shows in the x, — x, plane the iso-cost contours of value 25
and 100 for the function f. The value of the function at (0.6,4) is £(0.6, 4) = 25.
The gradient of the function at (0.6, 4) is given as

€= Vf(0.6, 4) = (3f /ax,, 3f /ox,)
= (50x,, 2x,) = (30, 8)
llell = V3030 + 8°8 = 31.048 35

Therefore a unit vector along the gradient is given as

T

’; C=c/llcl = (0.966 235, 0.257 663)
iy U"“S the given function, a vector tangent to the curve at the point (0.6, 4) is
= given as
Foy ' C1=(=4,15)

This vector is obtained by using the equation for the curve 25x§+:c-§=25 and

writing the tangent vector as (3x,/ds, dx,/3s) where s is a parameter along the
. tzurvc. The unit tangent vector is

o T=t/jit]| = (—0.257 663, 0.966 235)

Gl m{: If grad}ent is normal to the tangent, then C+T=0. This is indeed
A RN for °[Pl:"°°°‘_iln8 data. We can also use the condition that if two lines are
iy wmqwum{ -1eN My, = —1, where m, and m, are the slopes of the two lines. To

slope of the tangent we use the equation for the curve 25x3+x2=25, or
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4‘ X3
t=(-4,15)

f=100

FIGURE 5.12 i s
Iso-cost contours of function f=25x7+x; for

£ =25 and 100.

x, = 5V1 - x3. Therefore, the slope of the tangent at the point (0.6, 4) is given as
m, = dx,/dx, = =5x,/V1 —xi=—3%

The slope of the gradient vector is m; = 0 _ 3,75. Thus mm, is, indeed, —1, and

the two lines are normal to each other.

Property 2. Consider any arbitrary direction
d = (0.501 034, 0.865 430)
he direction of steepest ascent,

ng C than along d. Let us
C and the other

at the point (0.6, 4) as shown in Fig. 5.12. I C is t
then- the function should increase more rapldly_ alol
choose a step size & =0.1 and calculate two points, one along

along d as
x(!.) - x(l’) + ﬂ'c

0.6 0.966 235 _[0.6966235]
[4.0]“‘0-1[ ]“ 4.0257663

0.257 663
P =x+ ad

0.6 0.501 034]
= [4.@] +0'1[0.865 430

It

0.650103 4
[4.035 4300
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Now, we calculate the function at these points and compare their values:

F(x1) =28.3389
FxP) =27.2566

Since f(x") > f(x®), the function increases more rapidly along C than along d.

- Property 3. If the magnitude of the gradient vector represents the maximum rate
of change of f(x), then (c-¢)>(c-d). (c-c)=964.0 and (c-d)=21.9545.
Therefore, the gradient vector satisfies this property also.

Note that the last two properties are valid only in a local sense, i.e. only in
a small neighborhood of the point at which the gradient is evaluated. I

5.4.2 Steepest Descent Algorithm

The properties of the gradient vector can be used to define an iterative
algorithm for the unconstrained optimization problems. The direction of
maximum decrease in the cost function is the negative of its gradient at the
given point x. Any small move in the negative gradient direction will result in
the maximum local rate of decrease in the cost function. The negative gradient
vector then represents a direction of steepest descent for the cost function. This
résult'is summarized in the following theorem.

1. Theorem 8.1 Steepest descent direction. Let f(x) be a differentiable function
. with respect to x. The direction of steepest descent for f(x) at any point is
-3

d=-c, d=-—c;=—"; i = .
d=-c or =— F i=1ton (5.39) ||

skt
il

A T . . . . . .
... Equation (5.34) gives a direction of change in the design space for use in

H 4]
Bi] 5.4). Rased on the preceding discussion, the steepest descent algorithm is
statéd-as follows,
Step 1. Estimate g starting design x© and set the iteration counter k = 0.
A convergence parameter £ > 0.
Step 2. Calculate the gradient of f(x) at the point x* as ¢® = Vf(x*).

Calculate [|e®)||. If [|e®|| <, then stop the iterative process as x* =x® is a

ul_n point. Otherwise, go to Step 3.
Step 3. Let the scarch direction at the current point x* be d® = —¢®,

o Step 4. Calculate a step size a, to minimize f(x® + ad®). A one-

- dimensional search is used to determine .

' Step 5. Update the design as x**V =x* + 0, d®. Set k =k +1 and go

- Sy Step 2.

;. ‘The basic idea of the steepest descent method is quite simple. We start
mx‘.ﬂ'mm'al estimate for the minimum design. The direction of steepest
cent 18 computed at that point. If the direction is nonzero, we move as far
grmm along it to reduce the cost function. At the new design point we
culate: the steepest descent direction again and repeat the entire process.
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Note that since d = —c, the descent condition of Inequality (5.8) is automatically
satisfied as ¢ - d = —||¢|><0.

It is interesting to note that the successive directions of steepest descent
are normal to one another, i.e.

0Lkt = (5.35)

This can be shown quite easily by using the necessary conditions to determine
the optimum step size. In Step 4 of the algorithm, it is required to compute a;
to minimize f(x® + ad®). The necessary condition for this is df/da=0.
Using the chain rule of differentiation, we get

df(x(k+1)) af(x(k+l)) Tax(k+l)
de _[ ax ] da

which gives

¢k g =0, or ¢**V.c®=0 (5.36)
since .
(k+1) ax(kﬂ) F:]
@y D) =2 (x® N = (o
c = and = x* + ad*) =d
ox da aa( )

In the two-dimensional case, x= (x,, x;). Figure 5.13 is a view of the
design variable space. The closed curves in the figure are contours of the cost
function f(x). The figure shows several steepest descent directions that are
orthogonal to each other.

5.4.2.1 LINE SEARCH TERMINATION CRITERION. The numerical methods
of one-dimensional minimization are often used to perform line search in
multidimensional problems. Many times the numerical methods will give an
approximate or inexact value of the step size. Thus, line search termination
criterion is useful to decide the accuracy of a numerical method in the step size
calculation. For the exact value of the step size, Eq. (5.36) must hold, i.e.

&+, g = (5.37)

- X, .
' u \x"" FIGURE 5.13
Orthogonal steepest descent paths.
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where ¢** is the gradient at x**? and d® is the direction of travel j

previoug iteration. Due to round off and truncation errors in :) o
c:_nifm]anons, ghe line search termination criterion of Eq. (5.37) can':&uttfr
mﬁed preusely§ nevertheless, it gives an indication of the accurac i
nmpd evaluation of the step size. Note that the line search termina):' 0
criterion does not depend on how the direction of descent d is calculated on

Exsmple 5.9 Use of steepest descent algorithm. Minimize =xi+x2
2x,x; using the steepest descent method starting from the po:{:(gt i'lxlg)))_ Sk

’ WM"TD solve the problem, we follow steps of the steepest descent
1. The starting design is estimated as x® = (1, 0).
2. 0= (26, - 205, 26— 20) = (2, ~2); [l = 2V2#0.
350 =—=(2,2)
4. Calculate o to minimize f(x® + ad®) where x® + ad® = (1 - 2a, 20)
FO? + ad®) = (1 - 20)* + 22)* - 2(1 - 2a)(2a)
=16a’ -8 + 1 =f(a)

: &me .this is a simple function of a, we can use necessary and sufficient
*- conditions to :solve for the optimum step length. In general, numerical

one-dimensional search will have to be used to cal i
culate a. i
approach to solve for a, we get e Cmg e wiye

df (o)
'“E=0; Ra—-8=0o0r a,=0.25

d*f(a)
do?

; Therefore, the sufficiency condition for minimum is satisfied.
it S. Updating the design (x” + a,d®):

=32>0.

s X =1-0.25(2) =0.5
e 2§ =0+0.25(2) =0.5

Solving for ¢ from the expression in Step 2, we see that ¢ = (0, 0) which

satisfies the stopping criterion. Theref i ini i
; giwn-pmblem. : ore, (0.5, 0.5) is a minimum P01nt for thTI

) Tl;fl;::edmg prol'{le'm is quite simple and an optimum point is obtained in
“"W’ e ration. This is l_:e:cause the condition number of the Hessian of the
mmmx . is one (condmm_l number is a scalar associated with the given
: IX; refer to Section B.8 in Appendix B). In such a case, the steepest

method will converge in just one iteration with any starting point. In

m:‘: ﬂszl’éthm will require several iterations before an acceptable
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Example 5.10 Use of stecpest descent algorithm. Minimize f(x,, X3, X3) =x2+

2 4 2x2 + 2x,%, + 2x,%; using the steepest descent method with a starting design
as (2,4, 10). Select the convergence parameter € as 0.005. Perform a line search
by Golden Section search with initial step length & =0.05 and an accuracy of

0.0001.

Solution.
1. Let c=Vf =(2x, + 2, 4x2 + 2x, + 203, 43 + 23). Now, ¢@=(12,40,48)
and [|¢®]| = V4048 = 63.6> .
2. d9 = — @ =(~12, —40, —48).
3. Calculate a, by Golden Section search to minimize f (x” + ad"); @, =0.1587.
4. Update the design as x” =x + ad®:
x = (0.0956, —2.348, 2.381)

5. ¢V = (4.5, —4.438,4.828), ||Vl =7.952> €.
Note that ¢-d® =0 which verifies the line search termination

criterion. The steps in steepest descent algorithm should be repeated until the
convergence criterion is satisfied. Appendix D contains the computer program
and user supplied subroutines FUNCT and GRAD to implement steps of the
steepest descent algorithm, The iterative history for the problem with the

program is given in Table 5.3, The optimum cost function value is 0.0 and the
optimum point is (0, 0, 0). Note that a large number of iterations and function
evaluations are needed to reach the optimum. I

The method of steepest descent is quite simple and robust (it is
convergent). However, it has several drawbacks. These are:

1. Even if convergence of the method is guaranteed, a large number of
iterations may be required for the minimization of even positive definite
quadratic forms, i.e. the method can be quite slow to converge to the

minimum point.
2. Information calculated at the previous iterations is not used. Each iteration

is started independent of others, which is inefficient.

3. Only first-order information about the function is used at each iteration to
determine the search direction. This is one reason that convergence of the
method is slow. It can further deteriorate if only inaccurate line search is
used. Moreover, the rate of convergence depends on the condition number
of the Hessian of the cost function at the optimum point. If the condition
number is large, the rate of convergence of the method is slow.

4. Practical experience with the method has shown that a substantial decrease
in the cost function is achieved in the initial few iterations and the cost
function decreases quite slowly in later iterations. _

S. The direction of steepest descent (ditection of most rapid decrease in the
cost function) may be good in a local sense (in a small neighborhood) but

not in a global sense.
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TABLE 53
Optimum solution for Example 5.10 with steepest descent program
Ne.. 5, I % ftx) @ liel|
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Ot Sedign variabics: 8.04

.047 87E — 03, —6.813 19E — 03, 3.421 74E

) ; .3 -0
ﬁﬁ::cnnfmumvﬂu: 2.473 47E ~ 05.

Noew of gradient st optimum: 4.970 71E — 03,

Total no. of fuaction evaluations: 753.
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