Chap. 7. Linear Algebra: Matrix Eigenvalue Problems

square matrix
$$\underline{\underline{A}}\underline{\underline{x}} = \lambda \underline{\underline{x}}$$
unknown vector unknown scalar

 $\underline{x} = \underline{0}$: (no practical interest)

 $\underline{x} \neq \underline{0}$: eigenvectors of **A**; exist only for certain values of λ (eigenvalues or characteristic roots)

- \rightarrow Multiplication of **A** = same effect as the multiplication of **x** by a scalar λ
- → Important to determine the stability of chemical & biological processes
- Eigenvalue: special set of scalars associated with a linear systems of equations. Each eigenvalue is paired with a corresponding eigenvectors.

7.1. Eigenvalues, Eigenvectors

- Eigenvalue problems:
$$\underline{\underline{A}}\underline{x} = \lambda\underline{x}$$
 or $(\underline{\underline{A}} - \lambda\underline{\underline{I}})\underline{x} = \underline{0}$ Set of eigenvalues: spectrum of A eigenvectors

How to Find Eigenvalues and Eigenvectors

Ex. 1.)
$$\underline{\underline{A}} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \qquad -5x_1 + 2x_2 = \lambda x_1 \\ 2x_1 - 2x_2 = \lambda x_2 \qquad (\underline{\underline{A}} - \lambda \underline{\underline{I}})\underline{x} = \underline{0}$$

In homogeneous linear system, nontrivial solutions exist when det $(\mathbf{A}-\lambda\mathbf{I})=0$.

Characteristic equation of **A**:

$$D(\lambda) = \det(\underline{\underline{A}} - \lambda \underline{\underline{I}}) = \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = \lambda^2 + 7\lambda + 6 = 0$$
Characteristic polynomial

Characteristic determinant

Eigenvalues:
$$\lambda_1$$
=-1 and λ_2 = -6

Eigenvectors: for λ_1 =-1,
$$\underline{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ for } \lambda_2$$
=-6,
$$\underline{x}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
win ad from Causa alimination

obtained from Gauss elimination

General Case

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = \lambda x_1$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = \lambda x_n$$

$$(\underline{\underline{A}} - \lambda \underline{\underline{I}})\underline{x} = \underline{0}, \ D(\lambda) = \det(\underline{\underline{A}} - \lambda \underline{\underline{I}}) = 0$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = \lambda x_n$$

Theorem 1:

Eigenvalues of a square matrix $A \rightarrow$ roots of the characteristic equation of A. nxn matrix has at least one eigenvalue, and at most n numerically different eigenvalues.

Theorem 2:

If \underline{x} is an eigenvector of a matrix \mathbf{A} , corresponding to an eigenvalue λ , so is $k\underline{x}$ with any $k\neq 0$.

Ex. 2) multiple eigenvalue

- Algebraic multiplicity of λ : order M_{λ} of an eigenvalue λ Geometric multiplicity of λ : number of m_{λ} of linear independent eigenvectors corresponding to λ . (=dimension of eigenspace of λ)

In general,
$$m_{\lambda \leq} M_{\lambda}$$

Defect of λ : $\Delta_{\lambda} = M_{\lambda} - m_{\lambda}$

- Ex 3) algebraic & geometric multiplicity, positive defect
- Ex. 4) complex eigenvalues and eigenvectors

7.2. Some Applications of Eigenvalue Problems

Ex. 1) Stretching of an elastic membrane.

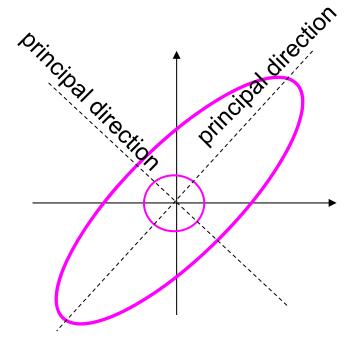
Find the principal directions: direction of position vector $\underline{\mathbf{x}}$ of P = (same or opposite) direction of the position vector $\underline{\mathbf{y}}$ of Q

$$x_{1}^{2} + x_{2}^{2} = 1, \ \underline{y} = \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$\underline{y} = \underline{\underline{A}}\underline{x} = \lambda \underline{x} \implies \lambda_{1} = 8, \ \underline{x}_{1} \text{ for } \lambda_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda_{2} = 2, \ \underline{x}_{2} \text{ for } \lambda_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Eigenvalue represents speed of response Eigenvector ~ direction



Ex. 4) Vibrating system of two masses on two springs

$$y_1'' = -5y_1 + 2y_2$$

 $y_2'' = 2y_1 - 2y_2$

Solution vector: $y = \underline{x}e^{wt}$

$$\Rightarrow \underline{A}\underline{x} = \lambda \underline{x} \quad (\lambda = w^2)$$
 solve eigenvalues and eigenvectors

$$\Rightarrow \underline{y} = \underline{x}_1(a_1 \cos t + b_1 \sin t) + \underline{x}_2(a_2 \cos \sqrt{6}t + b_2 \sin \sqrt{6}t)$$

Examples for stability analysis of linear ODE systems using eigenmodes

Stability criterion: signs of real part of eigenvalues of the matrix

$$\dot{x} = \frac{d\underline{x}}{dt} = \underline{\underline{A}}\underline{x}$$
 A determine the stability of the linear system. Re(λ) < 0: stable

 $Re(\lambda) > 0$: unstable

Ex. 1) Node-sink

$$\dot{x}_1 = -0.5x_1 + x_2 \implies \lambda_1 = -0.5$$
 stable
$$\dot{x}_2 = -2x_2 \qquad \qquad \lambda_2 = -2$$

Ex. 2) Saddle

Saddle
$$\dot{x}_1 = 2x_1 + x_2 \implies \lambda_1 = -1.5616, \underline{x}_1 \text{ for } \lambda_1 = \begin{pmatrix} 0.2703 \\ -0.9628 \end{pmatrix}$$
 unstable $\dot{x}_2 = 2x_1 - x_2$ $\lambda_2 = 2.5616, \underline{x}_2 \text{ for } \lambda_2 = \begin{pmatrix} 0.8719 \\ 0.4896 \end{pmatrix}$ Phase plane?

Ex. 3) Unstable focus

$$\dot{x}_1 = x_1 + 2x_2$$
 $\Rightarrow \lambda_1 = 1 + 2i$ unstable $\dot{x}_2 = -2x_1 + x_2$ $\lambda_2 = 1 - 2i$ Phase plane?

Ex. 4) Center

$$\dot{x}_1 = -x_1 - x_2 \implies \lambda_1 = 0 + 1.7321i$$

 $\dot{x}_2 = 4x_1 + x_2 \qquad \lambda_2 = 0 - 1.7321i$

7.3. Symmetric, Skew-Symmetric, and Orthogonal Matrices

- Three classes of real square matrices

(1) Symmetric:

$$\underline{\underline{\mathbf{A}}}^{\mathrm{T}} = \underline{\underline{\mathbf{A}}}, \quad \mathbf{a}_{kj} = \mathbf{a}_{jk}, \quad \begin{bmatrix} -3 & 1 & 5 \\ 1 & 0 & -2 \\ 5 & -2 & 4 \end{bmatrix}$$

(2) Skew-symmetric:

tric:
$$\underline{\underline{A}}^{T} = -\underline{\underline{A}}, \quad a_{kj} = -a_{jk}, \quad \begin{bmatrix} 0 & 9 & -12 \\ -9 & 0 & 20 \\ 12 & -20 & 0 \end{bmatrix}$$
 Zero-diagonal terms

(3) Orthogonal:

$$\underline{\underline{A}}^{T} = \underline{\underline{A}}^{-1}, \quad \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{bmatrix}$$

$$\underline{\underline{A}}^{T} = \underline{\underline{A}}^{-1}, \quad \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{bmatrix} \qquad \underline{\underline{\underline{A}}} = \underline{\underline{R}} + \underline{\underline{\underline{S}}}, \\ \underline{\underline{\underline{R}}} = \frac{1}{2} (\underline{\underline{\underline{A}}} + \underline{\underline{\underline{A}}}^{T}) \text{ symmetric} \\ \underline{\underline{\underline{S}}} = \frac{1}{2} (\underline{\underline{\underline{A}}} - \underline{\underline{\underline{A}}}^{T}) \text{ skew - symmetric}$$

Theorem 1:

- (a) The eigenvalues of a symmetric matrix are real.
- (b) The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

$$\underline{\underline{A}}\underline{\underline{k}} = \lambda \underline{\underline{k}}$$
 Conjugate: $\underline{\underline{A}}\underline{\underline{k}} = \overline{\lambda}\underline{\underline{k}} \Rightarrow \underline{\underline{A}}\underline{\overline{k}} = \overline{\lambda}\underline{\underline{k}}(\underline{\underline{A}} = \underline{\underline{A}}, \text{ real})$

Transpose, and then multiply \underline{k} : $\underline{\underline{k}}^T \underline{A}^T \underline{k} = \underline{\underline{k}}^T \overline{\lambda} \underline{k} \Rightarrow \underline{\underline{k}}^T \lambda \underline{k} = \underline{\underline{k}}^T \overline{\lambda} \underline{k} \Rightarrow \lambda \underline{\underline{k}}^T \underline{k} = \overline{\lambda} \underline{\underline{k}}^T \underline{k}$

Ex. 3)
$$\begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$
 $\lambda = 2, 8$ $\begin{bmatrix} 0 & 9 & -12 \\ -9 & 0 & 20 \\ 12 & -20 & 0 \end{bmatrix}$ $\lambda = 0, \pm 25i$

Orthogonal Transformations and Matrices

$$\underline{y} = \underline{\underline{A}}\underline{x} \quad (A : \text{orthogonal matrix}) \qquad \qquad \underline{E}\underline{x}) \ \underline{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- Orthogonal transformation in the 2D plane and 3D space: *rotation*

Theorem 2: (Invariance of inner product)

An orthogonal transformation preserves the value of the inner product of vectors.

$$\underline{\mathbf{u}} = \underline{\mathbf{A}}\underline{\mathbf{a}}, \underline{\mathbf{v}} = \underline{\mathbf{A}}\underline{\mathbf{b}} \quad (\underline{\mathbf{A}}: \text{ orthogonal})$$

$$\underline{\mathbf{u}} \cdot \underline{\mathbf{v}} = \underline{\mathbf{u}}^{\mathsf{T}}\underline{\mathbf{v}} = (\underline{\mathbf{A}}\underline{\mathbf{a}})^{\mathsf{T}}(\underline{\mathbf{A}}\underline{\mathbf{b}}) = \underline{\mathbf{a}}^{\mathsf{T}}\underline{\mathbf{A}}^{\mathsf{T}}\underline{\mathbf{A}}\underline{\mathbf{b}}$$

$$= \underline{\mathbf{a}}^{\mathsf{T}}(\underline{\mathbf{A}}^{-1}\underline{\mathbf{A}})\underline{\mathbf{b}} = \underline{\mathbf{a}}^{\mathsf{T}}\underline{\mathbf{b}} = \underline{\mathbf{a}}\cdot\underline{\mathbf{b}}$$
the length or norm of a vector in Rⁿ given by
$$\|\underline{\mathbf{a}}\| = \sqrt{\underline{\mathbf{a}}\cdot\underline{\mathbf{a}}} = \sqrt{\underline{\mathbf{a}}^{\mathsf{T}}\underline{\mathbf{a}}}$$

$$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = \underline{\mathbf{a}}^{\mathrm{T}} \underline{\mathbf{b}} \ (\underline{\mathbf{a}}, \underline{\mathbf{b}} : \text{column vectors})$$

$$\|\underline{\mathbf{a}}\| = \sqrt{\underline{\mathbf{a}} \cdot \underline{\mathbf{a}}} = \sqrt{\underline{\mathbf{a}}^{\mathrm{T}} \underline{\mathbf{a}}}$$

Theorem 3: (Orthonormality of column and row vectors)

A real square matrix is **orthogonal** iff its column (or row) vectors, $\underline{a}^1, \dots, \underline{a}^n$ form an

$$\underline{a}_{j} \cdot \underline{a}_{k} = \underline{a}_{j}^{T} \underline{a}_{k} = \begin{pmatrix} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{pmatrix}$$

$$\underline{a}_{j} \cdot \underline{a}_{k} = \underline{a}_{j}^{T} \underline{a}_{k} = \begin{pmatrix} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{pmatrix}$$

$$\underline{\underline{A}}^{-1} \underline{\underline{A}} = \underline{\underline{I}} = \underline{\underline{A}}^{T} \underline{\underline{A}}, \begin{pmatrix} \underline{\underline{a}_{1}^{1}} \\ \vdots \\ \underline{\underline{a}_{n}^{T}} \end{pmatrix} (\underline{\underline{a}_{1}} \quad \cdots \quad \underline{\underline{a}_{n}})$$

Theorem 4: The determinant of an orthogonal matrix has the value of +1 or -1.

$$1 = \det \underline{\underline{I}} = \det(\underline{\underline{A}}\underline{\underline{A}}^{-1}) = \det(\underline{\underline{A}}\underline{\underline{A}}^{T}) = \det \underline{\underline{A}} \det \underline{\underline{A}}^{T} = (\det \underline{\underline{A}})^{2}$$

Theorem 5: Eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs and have absolute value 1.

7.4. Complex Matrices: Hermitian, Skew-Hermitian, Unitary

- Conjugate matrix: $\underline{\underline{A}} = \overline{a}_{jk}$, $\underline{\underline{A}}^T = \overline{a}_{kj}$ $\underline{\underline{A}} = \begin{pmatrix} 3+4i & -5i \\ -7 & 6-2i \end{pmatrix} \Rightarrow \underline{\underline{A}}^T = \begin{pmatrix} 3-4i & -7 \\ 5i & 6+2i \end{pmatrix}$
- Three classes of complex square matrices:
- (1) Hermitian:

$$\underline{\underline{\underline{A}}}^{T} = \underline{\underline{A}}, \quad \overline{a}_{kj} = a_{jk}, \quad \begin{bmatrix} 4 & 1 - 3i \\ 1 + 3i & 7 \end{bmatrix}$$
 Diagonal-terms: real $\overline{a}_{jj} = a_{jj}$

(2) Skew-Hermitian: $\underline{\underline{A}}^T = -\underline{\underline{A}}, \quad \overline{a}_{kj} = -a_{jk}, \quad \begin{bmatrix} 3i & 2+i \\ -2+i & -i \end{bmatrix}$ Diagonal-terms: pure imag. or 0

 $a_{ii} = -a_{ii}$

(3) Unitary:
$$\underline{\underline{A}}^{T} = \underline{\underline{A}}^{-1}, \quad \begin{bmatrix} \frac{1}{2}i & \frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2}i \end{bmatrix}$$

- Generalization of section 7.3

Hermitian matrix: real
$$\rightarrow$$
 symmetric $\overline{\underline{A}}^T = \underline{A}^T = \underline{A}$

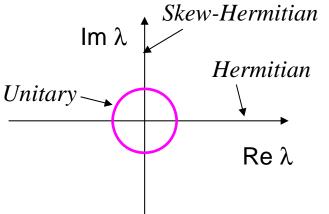
$$\underline{\underline{\underline{A}}}^{\mathrm{T}} = \underline{\underline{\underline{A}}}^{\mathrm{T}} = \underline{\underline{\underline{A}}}$$

Skew-Hermitian matrix: real \rightarrow skew-symmetric $\underline{\overline{A}}^T = \underline{A}^T = -\underline{A}$

$$\underline{\underline{\underline{A}}}^{\mathrm{T}} = \underline{\underline{\underline{A}}}^{\mathrm{T}} = -\underline{\underline{\underline{A}}}$$

Unitary matrix: real \rightarrow orthogonal $\underline{\underline{\underline{A}}}^T = \underline{\underline{\underline{A}}}^T = \underline{\underline{\underline{A}}}^{-1}$ Im λ

$$\underline{\underline{\overline{A}}}^{T} = \underline{\underline{A}}^{T} = \underline{\underline{A}}^{-1}$$



Eigenvalues

Theorem 1:

- (a) Eigenvalues of Hermitian (symmetric) matrix → real
- Skew-Hermitian (skew-symmetric) matrix → pure imag. or zero (b)
- Unitary (orthogonal) matrix → absolute value 1 (c)

Forms

 $\underline{\underline{x}}^T \underline{A}\underline{x}$: a form in the components x_1, \ldots, x_n of \underline{x} , A coefficient matrix

$$\underline{\overline{\mathbf{x}}}^{\mathrm{T}} \underline{\underline{\mathbf{A}}} \underline{\mathbf{x}} = \begin{bmatrix} \overline{\mathbf{x}}_{1} & \overline{\mathbf{x}}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix} = \mathbf{a}_{11} \overline{\mathbf{x}}_{1} \mathbf{x}_{1} + \mathbf{a}_{12} \overline{\mathbf{x}}_{1} \mathbf{x}_{2} + \mathbf{a}_{21} \overline{\mathbf{x}}_{2} \mathbf{x}_{1} + \mathbf{a}_{22} \overline{\mathbf{x}}_{2} \mathbf{x}_{2}$$

Proof of Theorem 1:

(a) Eigenvalues of Hermitian (symmetric) matrix → real

$$\underline{\underline{A}}\underline{x} = \lambda \underline{x} \implies \underline{\overline{x}}^{T} \underline{\underline{A}}\underline{x} = \underline{\overline{x}}^{T} \lambda \underline{x} = \lambda \underline{\overline{x}}^{T} \underline{x}$$

$$\lambda = \frac{\underline{\overline{x}}^{T} \underline{\underline{A}}\underline{x}}{\underline{\overline{x}}^{T} \underline{x}} = \frac{\text{real ?}}{\text{real !}} \quad (\text{use } \underline{\overline{\underline{A}}}^{T} = \underline{\underline{A}}, \underline{\underline{A}}^{T} = \underline{\overline{\underline{A}}})$$

$$\underline{\overline{x}}^{T} \underline{\underline{A}}\underline{x} = (\underline{\overline{x}}^{T} \underline{\underline{A}}\underline{x})^{T} = \underline{x}^{T} \underline{\underline{A}}^{T} \underline{\overline{x}} = \underline{x}^{T} \underline{\overline{\underline{A}}}\underline{\overline{x}} = (\underline{\overline{x}}^{T} \underline{\underline{A}}\underline{x})$$

(b) Eigenvalues of Skew-Hermitian (skew-symmetric) matrix → pure imag. or zero

$$\underline{\overline{\mathbf{x}}}^{\mathrm{T}}\underline{\underline{\mathbf{A}}}\underline{\mathbf{x}} = -\overline{\left(\underline{\overline{\mathbf{x}}}^{\mathrm{T}}\underline{\underline{\mathbf{A}}}\underline{\mathbf{x}}\right)}$$

(c) Eigenvalues of Unitary (orthogonal) matrix → absolute value 1

$$\underline{\underline{\underline{A}}}\underline{\underline{x}} = \lambda \underline{\underline{x}} \implies \text{conjugate transpose} : (\underline{\underline{\overline{A}}}\underline{\overline{x}})^T = (\overline{\lambda}\underline{\overline{x}})^T$$

$$\left(\underline{\overline{A}}\,\underline{\overline{x}}\right)^{T}\left(\underline{A}\,\underline{x}\right) = \left(\overline{\lambda}\,\underline{\overline{x}}\right)^{T}\left(\lambda\,\underline{x}\right) = \overline{\lambda}\,\lambda\,\underline{\overline{x}}^{T}\,\underline{x} = \left|\lambda\right|^{2}\,\underline{\overline{x}}^{T}\,\underline{x} = \underline{\overline{x}}^{T}\,\underline{x}$$

- For general n,

- For real A, x,

Quadratic form

- Hermitian A: Hermitian form, Skew-Hermitian A: Skew-Hermitian form

Theorem 1: For every choice of the vector <u>x</u>, the value of a Hermitian form is real, and the value of a skew-Hermitian form is pure imaginary or 0.

Properties of Unitary Matrices. Complex Vector Space Cⁿ.

- Complex vector space: Cⁿ

Inner product: $\underline{a} \cdot \underline{b} = \overline{\underline{a}}^{T} \underline{b}$

length or norm: $\left\|\underline{\underline{a}}\right\| = \sqrt{\underline{a} \cdot \underline{a}} = \sqrt{\left|\underline{a}^T\underline{a}\right|^2 + \dots + \left|a_n\right|^2}$

<u>Theorem 2</u>: A unitary transformation, $\underline{y} = \mathbf{A}\underline{x}$ (**A**: unitary matrix) preserves the value of the inner product and norm.

$$\underline{\mathbf{u}} \cdot \underline{\mathbf{v}} = \underline{\overline{\mathbf{u}}}^{\mathrm{T}} \underline{\mathbf{v}} = (\underline{\overline{\underline{\mathbf{A}}}} \underline{\overline{\mathbf{a}}})^{\mathrm{T}} (\underline{\underline{\underline{\mathbf{A}}}} \underline{\mathbf{b}}) = \underline{\overline{\mathbf{a}}}^{\mathrm{T}} \underline{\overline{\underline{\mathbf{A}}}}^{\mathrm{T}} \underline{\underline{\underline{\mathbf{A}}}} \underline{\mathbf{b}} = \underline{\overline{\mathbf{a}}}^{\mathrm{T}} \underline{\underline{\mathbf{b}}} = \underline{\underline{\mathbf{a}}} \cdot \underline{\mathbf{b}}$$

- Unitary system: complex analog of an orthonormal system of real vectors

$$\underline{\mathbf{a}}_{\mathbf{j}} \cdot \underline{\mathbf{a}}_{\mathbf{k}} = \overline{\underline{\mathbf{a}}}_{\mathbf{j}}^{\mathsf{T}} \underline{\mathbf{a}}_{\mathbf{k}} = \begin{pmatrix} 0 & \text{if } \mathbf{j} \neq \mathbf{k} \\ 1 & \text{if } \mathbf{j} = \mathbf{k} \end{pmatrix}$$

Theorem 3: A square matrix is unitary iff its column vectors form a unitary system.

Theorem 4: The determinant of a unitary matrix has absolute value 1.

$$1 = \det \underline{\underline{\underline{\underline{A}}}}^{-1} = \det(\underline{\underline{\underline{A}}}^{-1}) = \det(\underline{\underline{\underline{A}}}^{T}) = \det \underline{\underline{\underline{\underline{A}}}}^{T} = \det \underline{\underline{\underline{\underline{A}}}} \det \underline{\underline{\underline{\underline{A}}}}^{T}$$

$$= \det \underline{\underline{\underline{\underline{A}}}} \det \underline{\underline{\underline{\underline{A}}}} = |\det \underline{\underline{\underline{A}}}|^{2}$$

7.5. Similarity of Matrices, Basis of Eigenvectors, Diagonalization

-Eigenvectors of n x n matrix **A** forming a basis for Rⁿ or Cⁿ ~ used for diagonalizing **A**

Similarity of Matrices

- n x n matirx $\underline{\hat{A}}$ is *similar* to an n x n matrix **A** if $\underline{\hat{A}} = \underline{\underline{P}}^{-1} \underline{\underline{AP}}$ for nonsingular n x n **P**

Similarity transformation: $\underline{\hat{A}}$ from $\underline{\underline{A}}$

Theorem 1: $\underline{\hat{A}}$ has the same eigenvalues as \mathbf{A} if $\underline{\hat{A}}$ is similar to \mathbf{A} . $\underline{y} = \underline{\underline{P}}^{-1}\underline{x}$ is an eigenvector of $\underline{\hat{A}}$ corresponding to the same eigenvalue, if \underline{x} is an eigenvector of \mathbf{A} .

$$\underline{\underline{A}}\underline{x} = \lambda \underline{x} \implies \underline{\underline{P}}^{-1}\underline{\underline{A}}\underline{x} = \lambda \underline{\underline{P}}^{-1}\underline{x}$$

$$\underline{\underline{P}}^{-1}\underline{\underline{A}}\underline{x} = \underline{\underline{P}}^{-1}\underline{\underline{A}}\underline{I}\underline{x} = \underline{\underline{P}}^{-1}\underline{\underline{A}}\underline{\underline{P}}\underline{\underline{P}}^{-1}\underline{x} = \underline{\hat{\underline{A}}}(\underline{\underline{P}}^{-1}\underline{x}) = \lambda(\underline{\underline{P}}^{-1}\underline{x})$$

Properties of Eigenvectors

Theorem 2: $\lambda_1, \lambda_2, ..., \lambda_n$: distinct eigenvalues of an n x n matrix. Corresponding eigenvectors $\underline{x}_1, \underline{x}_2, ..., \underline{x}_n \rightarrow$ a linearly independent set. Theorem 3: n x n matrix A has n distinct eigenvalues → A has a basis of eigenvector for Cⁿ (or Rⁿ).

Ex. 1)
$$\underline{\underline{A}} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$
 a basis of eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Theorem 4: A Hermitian, skew-Hermitian, or unitary matrix has a basis of eigenvectors for Cⁿ that is a *unitary* system.

A symmetric matrix has an *orthonomal* basis of eigenvectors for Rⁿ.

$${}^{(1)}\underline{\underline{\underline{A}}}\underline{\underline{x}}_1 = \lambda_1\underline{\underline{x}}_1, \quad {}^{(2)}\underline{\underline{\underline{A}}}\underline{\underline{x}}_2 = \lambda_2\underline{\underline{x}}_2; \quad \text{show } \underline{\underline{x}}_1 \cdot \underline{\underline{x}}_2 = \underline{\underline{x}}_1^T\underline{\underline{x}}_2 = 0$$

- (1) Transpose, then multiply $\underline{\mathbf{x}}_2$ on the right: $\underline{\mathbf{x}}_1^T \underline{\underline{\mathbf{A}}}^T = \underline{\mathbf{x}}_1^T \lambda_1 \rightarrow \underline{\mathbf{x}}_1^T \underline{\underline{\mathbf{A}}}^T \underline{\mathbf{x}}_2 = \underline{\mathbf{x}}_1^T \lambda_1 \underline{\mathbf{x}}_2 = \lambda_1 \underline{\mathbf{x}}_1^T \underline{\mathbf{x}}_2$
- (2) Multiply $\underline{\mathbf{x}}_{1}^{\mathrm{T}}$ on the left: $\underline{\mathbf{x}}_{1}^{\mathrm{T}}\underline{\mathbf{A}}\underline{\mathbf{x}}_{2} = \underline{\mathbf{x}}_{1}^{\mathrm{T}}\lambda_{2}\underline{\mathbf{x}}_{2} = \lambda_{2}\underline{\mathbf{x}}_{1}^{\mathrm{T}}\underline{\mathbf{x}}_{2}$

$$\lambda_{1} \underline{\mathbf{x}}_{1}^{\mathsf{T}} \underline{\mathbf{x}}_{2} = \lambda_{2} \underline{\mathbf{x}}_{1}^{\mathsf{T}} \underline{\mathbf{x}}_{2} \Longrightarrow 0 = (\lambda_{1} - \lambda_{2}) \underline{\mathbf{x}}_{1}^{\mathsf{T}} \underline{\mathbf{x}}_{2}, \lambda_{1} \neq \lambda_{2}$$

Ex. 3) From Ex. 1, orthonormal basis of eigenvectors $\begin{vmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{vmatrix}$, $\begin{vmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{vmatrix}$

- Basis of eigenvectors of a matrix A: useful in transformation and diagonalization

$$\underline{\underline{y}} = \underline{\underline{A}}\underline{\underline{x}}, \quad \underline{\underline{x}} = c_1\underline{\underline{x}}_1 + c_2\underline{\underline{x}}_2 + \dots + c_n\underline{\underline{x}}_n \quad (\underline{\underline{x}}_1, \dots, \underline{\underline{x}}_n : basis)$$

$$\Rightarrow \underline{\underline{y}} = \underline{\underline{\underline{A}}} \left(c_1\underline{\underline{x}}_1 + c_2\underline{\underline{x}}_2 + \dots + c_n\underline{\underline{x}}_n \right)$$

$$= c_1\lambda_1\underline{\underline{x}}_1 + \dots + c_n\lambda_n\underline{\underline{x}}_n$$

Complicated calculation of A on $\underline{x} \rightarrow$ sum of simple evaluation on the eigenvectors of A.

Diagonalization

Theorem 5: If an n x n matrix **A** has a basis of eigenvectors, then

$$\underline{\underline{D}} = \underline{\underline{X}}^{-1} \underline{\underline{A}} \underline{\underline{X}}$$

is diagonal, with the eigenvalues of **A** on the main diagonal.

(X: matrix with eigenvectors as column vectors)

$$\underline{D}^{m} = \underline{X}^{-1} \underline{A}^{m} \underline{X} \quad (m = 2, 3, ...)$$

- → n x n matrix **A** is diagonalizable iff **A** has n linearly independent eigenvectors.
- → Sufficient condition for diagonalization: If an n x n matrix A has n distinct eigenvalues, it is diagonalizable.

Ex. 4)
$$\underline{\underline{A}} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
; eigenvectors $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$; $\underline{\underline{X}} = \begin{bmatrix} 4 & 1 \\ 1 & -1 \end{bmatrix}$; $\underline{\underline{X}}^{-1} \underline{\underline{A}} \underline{\underline{X}} = \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix}$

 $\underline{x}_1,...,\underline{x}_n$: basis of eigenvectors of **A** for C^n (or R^n) corresponding to $\lambda_1,...,\lambda_n$

$$\underline{\underline{A}}\underline{\underline{X}} = \underline{\underline{A}}[\underline{x}_1 \quad \cdots \quad \underline{x}_n] = [\underline{\underline{A}}\underline{x}_1 \quad \cdots \quad \underline{\underline{A}}\underline{x}_n] = [\lambda_1\underline{x}_1 \quad \cdots \quad \lambda_n\underline{x}_n] = \underline{\underline{X}}\underline{\underline{D}}$$

$$\Rightarrow \underline{\underline{X}}^{-1}\underline{\underline{A}}\underline{\underline{X}} = \underline{\underline{D}}$$

$$\underline{\underline{D}}^2 = \underline{\underline{X}}^{-1} \underline{\underline{A}} \underline{\underline{X}} \underline{\underline{X}}^{-1} \underline{\underline{A}} \underline{\underline{X}} = \underline{\underline{X}}^{-1} \underline{\underline{A}} \underline{\underline{A}} \underline{\underline{X}} = \underline{\underline{X}}^{-1} \underline{\underline{A}}^2 \underline{\underline{X}}$$

Ex. 5) Diagonalization

Transformation of Forms to Principal Axes

Quadratic form: $Q = \underline{\underline{x}}^T \underline{\underline{A}} \underline{\underline{x}}$

If A is real symmetric, A has an orthogonal basis of n eigenvectors

$$\rightarrow$$
 X is orthogonal. $\underline{\underline{X}}^T = \underline{\underline{X}}^{-1}$ $\underline{\underline{A}} = \underline{\underline{X}}\underline{\underline{D}}\underline{\underline{X}}^{-1} = \underline{\underline{X}}\underline{\underline{D}}\underline{\underline{X}}^T$

$$Q = \underline{\underline{x}}^{T} \underline{\underline{X}} \underline{\underline{D}} \underline{\underline{X}}^{T} \underline{\underline{x}} = \underline{\underline{y}}^{T} \underline{\underline{D}} \underline{\underline{y}} = \lambda_{1} y_{1}^{2} + \lambda_{1} y_{n}^{2} + \dots + \lambda_{n} y_{n}^{2}$$

$$(\underline{\underline{y}} = \underline{\underline{X}}^{T} \underline{\underline{x}} = \underline{\underline{X}}^{-1} \underline{\underline{x}}, \ \underline{\underline{x}} = \underline{\underline{X}} \underline{\underline{y}})$$

Theorem 6: The substitution $\underline{x} = X\underline{y}$, transforms a quadratic form

$$Q = \underline{\underline{x}}^{T} \underline{\underline{A}} \underline{\underline{x}} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} x_{j} x_{k}$$

to the principal axes form $Q = \underline{y}^T \underline{\underline{D}} \underline{y} = \lambda_1 y_1^2 + \lambda_1 y_n^2 + \dots + \lambda_n y_n^2$ where $\lambda_1, \dots, \lambda_n$ eigenvalues of the symmetric Matrix **A**, and **X** is orthogonal matrix with corresponding eigenvectors as column vectors.

Ex. 6) Conic sections.

Example) Solution of linear 1st-order Eqn.:

$$\frac{\dot{y}}{dt} = \frac{dy}{dt} = \underline{\underline{A}}\underline{y}$$
Define: $y = \underline{\underline{Y}}$

Define:
$$\underline{\underline{y}} = \underline{\underline{X}}\underline{\underline{z}} \rightarrow \underline{\underline{z}} = \underline{\underline{X}}^{-1}\underline{\underline{y}}$$

$$\underline{\underline{X}}\dot{z} = \underline{\underline{A}}\underline{X}\underline{z} \rightarrow \dot{\underline{z}} = \underline{\underline{D}}\underline{z}$$

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \Rightarrow \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \begin{pmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{pmatrix} \begin{bmatrix} z_1(0) \\ z_2(0) \end{bmatrix}$$

$$\underline{\dot{z}} = \underline{\underline{\underline{D}}}\underline{\underline{z}} \implies \underline{\dot{z}} = e^{\underline{\underline{D}}t}\underline{\underline{z}}(0)$$

$$\Rightarrow \underline{\underline{y}}(t) = \underline{\underline{X}}\underline{\underline{z}}(t) = \underline{\underline{X}}e^{\underline{\underline{D}}t}\underline{\underline{X}}^{-1}\underline{\underline{y}}(0)$$

Ex.)
$$\dot{y}_1 = -0.5y_1 + y_2$$
 $\Rightarrow \underline{y}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ for $\lambda_1 = -0.5$, $\underline{y}_2 = \begin{bmatrix} -0.5547 \\ 0.8321 \end{bmatrix}$ for $\lambda_2 = -2$
 $\dot{y}_2 = -2y_2$

$$\underline{y}(t) = \begin{pmatrix} 1 & -0.5547 \\ 0 & 0.8321 \end{pmatrix} \begin{pmatrix} e^{-0.5t} & 0 \\ 0 & e^{-2t} \end{pmatrix} \begin{pmatrix} 1 & -0.5547 \\ 0 & 0.8321 \end{pmatrix}^{-1} \underline{y}(0)$$