Chap. 7. Linear Algebra: Matrix Eigenvalue Problems

_~AX=AX

square matrix 7 \

unknown vector unknown scalar

= 0: (no practical interest)
# 0: eigenvectors of A; exist only for certain values of A (eigenvalues or

characteristic roots)
- Multiplication of A = same effect as the multiplication of x by a scalar A

- Important to determine the stability of chemical & biological processes

X
X

- Eigenvalue: special set of scalars associated with a linear systems of equations.
Each eigenvalue is paired with a corresponding eigenvectors.

7.1. Eigenvalues, Eigenvectors
- Eigenvalue problems: Ax=AX or (A—M)X =0

/ AN : Set of eigenvalues: spectrum of A
eigenvectors
eigenvectors



How to Find Eigenvalues and Eigenvectors

Ex. 1) {—5 2 } —5X, +2X, = AX,

.

2X, —2X, = AX,
In homogeneous linear system, nontrivial solutions exist when det (A-Al1)=0.
Characteristic equation of A:

—5-A 2
D(A) = det(A-Al) = =N +7L+6=0

Characteristic polynomial

2 —2-A

Characteristic determinant

Eigenvalues: A,=-1 and A,= -6

Eigenvectors: for A,=-1, 1 for A,=-6, 5
| S C IS

obtained from Gauss el imination



General Case
X, +a,X, +oo Ay X, = AX,
: (A-A1)x=0, D() =det(A—11)=0
A Xy +a X, +o- A X, :7\,Xn
Theorem 1:

Eigenvalues of a square matrix A - roots of the characteristic equation of A.
nxn matrix has at least one eigenvalue, and at most n numerically different eigenvalues.

Theorem 2:
If X Is an eigenvector of a matrix A, corresponding to an eigenvalue A,
so is kx with any k=0.

Ex. 2) multiple eigenvalue

- Algebraic multiplicity of A: order M, of an eigenvalue A
Geometric multiplicity of A: number of m, of linear independent eigenvectors
corresponding to A. (=dimension of eigenspace of A)

In general, m, . M,
Defect of A: Ay=M,-m,



Ex 3) algebraic & geometric multiplicity, positive defect

Ex. 4) complex eigenvalues and eigenvectors

7.2. Some Applications of Eigenvalue Problems

Ex. 1) Stretching of an elastic membrane.
Find the principal directions: direction of position vector x of P
= (same or opposite) direction of the position vector y of Q

5 3)\| X QS
X2+ x5 =1, y:B/l}:(B 5]{)(1} o% @c’)?o
- 2 2 O. A 6\//

1
y=Ax=Ax 321:8’)(1](0"21:(1)

|

v

Jy=2.%, for 4, =[_11j

Eigenval ue represents speed of response
Eigenvector ~ direction




Ex. 4) Vibrating system of two masses on two springs
Y1 =-9y; +2Y,

Y2 =2y, -2y,
Solution vector: Y = xe™

= Ax=Ax (A= WZ) solve eigenvalues and eigenvectors

=y =X, (a, cost + by sint) + x, (a, cosv6t + b, sin/6t)

Examples for stability analysis of linear ODE systems using eigenmodes
Stability criterion: signs of real part of eigenvalues of the matrix

« = d_X — Ay A determine the stability of the linear system.

Cdt = Re(\) < 0O: stable
Re(A) > 0: unstable
Ex. 1) Node-sink
X, =-=0.5%; + X, — 4, =-05 stable
XZ — —2X2 2’2 — _2



Ex. 2) Saddle
X =2X; + X,

Ex. 3) Unstable focus
X1 =X; + 2X,
X, ==2X; + X,
Ex. 4) Center
X1 ==Xy =X,
X, =4X, + X,

= A4, =-1.5616, x, for 4, = [

A, =2.5616, X, for A, :[

= A4 =1+2 unstable

A, =1-2

Phase plane ?

— 4, =0+1.7321i
A, =0-1.7321

0.2703
—0.9628

0.8719
0.4896

j unstable

j Phase plane ?



7.3. Symmetric, Skew-Symmetric, and Orthogonal Matrices
- Three classes of real square matrices

(1) Symmetric: -3 1 5
é =A, a;=3,, |1 0 -2
'S5 -2 4|
(2) Skew-symmetric: (0 9 -12]
éT =-A, 3;,=—q,, [-9 0 20 Zero-diagonal terms
112 -20 0 |
(3) Orthogonal: f o 1 97
3 3 3 =
AT =A—1 _g E E é 5+§’
TR 5=i<é+g>wmmemc
| 3 3 3 1

A-A )skew Ssymmetric

Theorem 1.
(a) The eigenvalues of a symmetric matrix are real.

Q) The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.
= Ak Conjugate: Q lk:>AE Ak(A =A, resl)
K




Ex. 3) 5 3 0 9 _-12]
{3 5}“2’8 9 0 20|A=0,+25
|12 -20 O |
Orthogonal Transformations and Matrices
. cos® —sinO)( X
y=Ax (A :orthogonal matrix) Ex)y= Vi) _ .
- = = Y, sSn® cosO )\ X,

- Orthogonal transformation in the 2D plane and 3D space: rotation

Theorem 2: (Invariance of inner product)
An orthogonal transformation preserves the value of the inner product of vectors.

u=Aa,v=Ab (A:orthogonal) a-b=a'b (a b:column vectors)
u-v=u'v=(Aa)'(Ab)=a'A"Ab the length or norm of a vector in R" given by

—a'(A"A)b=a'b=a-b la|=+ya-a=4a'a

Theorem 3: (Orthonormality of column and row vectors)
A real square matrix is orthogonal iff its column (or row) vectors, at,... , a" form an

orthonormal system o T
. 0if j=k ) =

Q- = a=|_ . . ATA=I=A"A| | |&@ - a,)
1if j=K D



Theorem 4: The determinant of an orthogonal matrix has the value of +1 or —1.

1=det] =det(AA ™) =det(AA") =detAdetA" = (detA)?

Theorem 5: Eigenvalues of an orthogonal matrix A are real or complex conjugates in
pairs and have absolute value 1.

7.4. Complex Matrices: Hermitian, Skew-Hermitian, Unitary
- Conjugate matrix: _ T 3+4i —5 1 (3-4i -7
= Qs A A= |=>A = .
= -7 6-2 = S 6+2

- Three classes of complex square matrices:
(1) Hermitian:

13>
13>
I

—T _ 4 1-3 .
A =A, a;,=a, _ Diagonal-terms: real
1+ 3 I ajj = ajj
(2) Skew-Hermitian: __ B 3 24 _ |
A =-A, 3;=—4q, i _ Dlagonal-.terms.
—etl Tl pure imag. or 0
(3) Unitary: 1 i 1 3 a; =-a;
Al=A?, |2 2
= ="' |13 4
— —I
| 2 2




- Generalization of section 7.3

. . . T
Hermitian matrix: real - symmetric

13>
I

Al =

1>

Skew-Hermitian matrix: real = skew-symmetric ET =

Unitary matrix: real - orthogonal ET = AT = A‘l

Eigenvalues

AT=-A

- Skew-Hermitian
mx |~

Hermitian

Unitary — /\ \' ;
N

Re A
Theorem 1.
(a) Eigenvalues of Hermitian (symmetric) matrix - real
(b) Skew-Hermitian (skew-symmetric) matrix = pure imag. or zero
(c) Unitary (orthogonal) matrix - absolute value 1
Forms

XTAX : a form in the components x,... , X, of X, A coefficient matrix

T

||
| 3>

a‘21 a22 X 2

= = all a12 Xl = N4 V4 V2
X = [Xl XZ] |: — ailxlxl + a12X1X2 + a'21X2X1 + a22)(2)(2



Proof of Theorem 1.
(a) Eigenvalues of Hermitian (symmetric) matrix - real

Ax=Ax = X'Ax=X'Ax=AX'X

(c) Eigenvalues of Unitary (orthogonal) matrix - absolute value 1

Ax=Ax = conjugatetranspose: (EY)T =(1%)"

(Ax)" (Ax)=(TR) (2x)=ZA%" x = | x =X "X



- For general n,

n n
T _ _ _
X éﬁ = Zzajkxjxk =y X Xg T+, X X

j=1 k=1
+a, X, X+ +a2n¥2xn
_|_ ..................
+a X X;+ --+annYan
- For real A, X,
n n
XTéX — Z;;ajkxjxk — a11X12 T, X X, + -+, X X,
=1 k=

2
T A, XX + 85X, -+ A, XX,

+a,,X, X, +a X X, - +a, X

nn°-n
Quadratic form

- Hermitian A: Hermitian form, Skew-Hermitian A: Skew-Hermitian form

Theorem 1: For every choice of the vector x, the value of a Hermitian form is real,
and the value of a skew-Hermitian form is pure imaginary or O.




Properties of Unitary Matrices. Complex Vector Space C".
- Complex vector space: C"

Inner product: a-b=2a'b

length or norm: HQH = \/@ = \/il = \/‘ai‘z +"'+‘an‘2

Theorem 2: A unitary transformation, y=Ax (A: unitary matrix) preserves the value of
the inner product and norm.

u-v=u'v=(A3)"(Ab)=a'A'Ab=a'b=a-b

- Unitary system: complex analog of an orthonormal system of real vectors

. (0if j£k

Theorem 3: A square matrix is unitary iff its column vectors form a unitary system.

Theorem 4: The determinant of a unitary matrix has absolute value 1.
1=det| = det(AA ™) = det(AA ') =detAdetA' =detAdetA

= det AdetA =|detA|°



7.5. Similarity of Matrices, Basis of Eigenvectors, Diagonalization
-Eigenvectors of n x n matrix A forming a basis for R" or C" ~ used for diagonalizing A

Similarity of Matrices
- N X N matirx Als similar to an n x n matrix A if A P_léE for nonsingular n x n P

Similarity transformation: é from é

Theorem 1: A has the same eigenvalues as A if A is similar to A.

y =E_1§ is an eigenvector of A corresponding to the same eigenvalue,

if X Is an eigenvector of A.
Ax=Ax = P‘le - /1P‘1x
P1AX = P‘lAIx P‘lA PP‘1 é E_ll)= /1(5‘15)

Properties of Eigenvectors
Theorem 2: A, A,, ..., A distinct eigenvalues of an n x n matrix.
Corresponding eigenvectors x,, X,, ..., X, = a linearly independent set.




Theorem 3: n x n matrix A has n distinct eigenvalues - A has a basis of eigenvector
for C" (or R").

5 3 11 | 1
Ex. 1) é:{g 5} abasisof eigenvectors u{ }

Theorem 4: A Hermitian, skew-Hermitian, or unitary matrix has a basis of
eigenvectors for C" that is a unitary system.
A symmetric matrix has an orthonomal basis of eigenvectors for R".

méﬁl = A Xy, (Z)QXZ = A, X,; ShOW X, - X, = ZIZZ =0

(1) Transpose, then multiply x, ontheright: x; AT =x; 4 =X A" X, =X; 4 X, =4 X1 X,
(2) Multiply x; on theleft: x; AX, = X; A,X, = A,X; X,
Xy Xy = AoXg Xp = 0= (4 =2, )% X5, 4 # 4
Ex. 3) From Ex. 1, orthonormal basis of eigenvectors V2 , V2
12 || -1/42
- Basis of eigenvectors of a matrix A: useful in transformation and diagonalization
y — él! X — Cll]_ + CZXZ teet Cnln (Kl! eny Xn baSIS)

:y=é(c1§1+C2§2+~-+Cn§n)

= Cl//zill Tt Cn/q“an

Complicated calculation of A onx = sum of simple evaluation on the eigenvectors of A.



Diagonalization
Theorem 5: If an n x n matrix A has a basis of eigenvectors, then

IS diagonal, with the eigenvalues of A on the main diagonal.
(X: matrix with eigenvectors as column vectors)

D"=X"A"X (m=23..)

- n x n matrix A is diagonalizable iff A has n linearly independent eigenvectors.
- Sufficient condition for diagonalization: If an n x n matrix A has n distinct
eigenvalues, it is diagonalizable.

5 4 4 1 4 1 6 0
Ex. 4) Az{ }; eigenvectors{ }{ }; Xz{ }; Xlez{ }
= |1 2 1/ |-1 = |1 -1 = == (0 1

X1,.--, X, basis of eigenvectors of A for C" (or R") corresponding to A, ..., A,
AX=Al; - X l=[Ax - Ax|=[Ax - A4x,]=XD

D’ =X"AXXTAX =XTAAX =X"A’X

Ex. 5) Diagonalization



Transformation of Forms to Principal Axes
Quadratic form: Q=x'Ax

If A is real symmetric, A has an orthogonal basis of n eigenvectors

> Xis orthogonal. X' =X"" A=XDX"'=XDX'
Q=x'XDX'x=y Dy=Ay; +A4Y: +--+ 4,y
y=X"x=X"x x=xy)

Theorem 6: The substitution x=Xy, transforms a quadratic form

Q=x'Ax= iiajkxjxk

j=1 k=1

to the principal axes form Q=Y'Dy=A4Y: + Ay2 +---+ 4,y?
where A,,..., A, eigenvalues of the symmetric Matrix A, and X is
orthogonal matrix with corresponding eigenvectors as column vectors.

Ex. 6) Conic sections.



Example) Solution of linear 1st-order Eqgn.:

dy
:—_:A
Define:y=Xz — z=X"y
Xz2=AXZ — z=Dz

{21} |:Zl(t)j| [eﬂ1t 0 le(O)}
- —
Z Z,(t) 0 €% )|z,(0)

= y(t)=Xz(t)=Xe>'X"y(0)

—0.5547
forA, =—
0.8321 } &

05547\ (e9%t o \(1 —05547)"
y(t) = o y(0)
0 08321) o e2]l0 0.8321

Ex.) y,=-0.9y;+Yy, =Yy, = {}forﬂi —0.5, 2—{
Y, =-2Y,



