Chap. 11. PARTIAL DIFFERENTIAL EQUATIONS

» An equation involving partial derivatives of an unknown function of two more independent variables
- PDE

Classification of PDES
e Linear and nonlinear PDEs
Linear PDE: Thereis no product of the dependent variable and/or product of its derivatives within the

equation
Nonlinear PDE: The equation contains a product of the dependent variable and/or a product of the
derivatives
2 2 3 2
a—l;+ 2xya—l2J + u=1(2nd — order,linear), 82u + xa—l;+8u =5y (3rd — order, linear)
oX oy ox“dy oy

oax2 Ixdy?

» Classification based on characteristics (paths of propagation of physical disturbances)
() First-order PDE: Almost all first-order PDES have real characteristics, and therefore behave much like
hyperbolic equations of second order.
(I Second-order PDE: A second-order PDE in two dependent variables, x and y, may be expressed in a

genera form as 52 52 52 3 3
A (12)+B ¢ +C (E+D ¢+E ¢+F¢+G:O
X oxdy oy oX oy

2. \3 3 2
Ju +6 ou = X (nonlinear), a—l;|+xu@:x(nonlinear)
oX ay




* The equation is classified according to the expression (B2-4AC) as follows:
(B%-4AC) <0 - Elliptic equation
= 0 - Parabolic equation
> 0 - Hyperbolic equation
(a) Elliptic equations

No real characteristic lines exist

A disturbance propagatesin all directions

Domain of solution isaclosed region

Boundary conditions must be specified on the boundaries of the domain

(b) Parabolic equations
Only one characteristic line exists
A disturbance propagates along the characteristic line
Domain of solution is an open region
Aninitia condition and two boundary conditions are required

(c) Hyperbolic equations
Two characteristic lines exist
A disturbance propagates along the characteristic lines
Domain of solution is an open region
Two initial conditions along with two boundary conditions are required

* Boundary conditions
(a) Dirichlet B.C. (=Essential B.C.): The value of the dependent variable along the boundary is specified
(b) Neumann B.C (=Natural B.C.): The normal gradient of the dependent variable along with the
boundary is specified
(c) Mixed B.C. (Robbin B.C.): A combination of the Dirichlet and the Neumann type B.C.’s is specified



«11.1. Basic Concepts
- Linear & nonlinear
- Homogeneous & nonhomogeneous

Ex.1) Important linear 2"9-order PDEs

0°u_ ,9%u du_ ,0°U

2 =C W 1D wave Eqn. o =C o 1D heat Eqn.

J0°u  9%u 2°u  9%u .
—+——=0 2D Laplace Eqn. ——+——=1f(x,y) 2D Poisson Egn.
aXZ ayz p q aXZ ayz ( y) q

% _ o 2%, 0% Pu P u_
Jt2 X2 oy’ 2D wave Eqn. X2 oyt oz aplace Eqgn.

Theorem 1: Superposition or linearity principle
u,, U,: solutions of a linear homogeneous PDE in R, then
u = c,u, + c, U, : also solution of that equation in R

Ex. 1) A solution u(x,y) of PDE u,,-u=0
u(x,y) = A(y)e* + B(y)e™

Ex. 2) PDE u,, = -u,
U,=p > p=-pi p=c(¥)ey > u(xy) = f(x)e” + g(y) where f(x)=[c(x)dx



11.2. Modeling: Vibrating String, Wave Equation

- Equation governing small transverse vibration of an elastic string
Find the deflection u(x,t):

Assumptions: - Constant mass/unit length, perfect elastic, no resistance to bending
- Negligible gravitational force
- Small transverse motion in vertical plane - vertical movement

Derivation of the PDE from forces
In horizontal direction: T, coso. =T, cosp =T = const

2
In vertical direction: TzsinB—TlsinocszXa u

a2 1D Wave Equation:
. . 2
TzsmB_Tlsmoc:tanB_tana:pra_u - Pu 2& (2 T]

Y
2nd-order Hyperbolic PDE

TpcosB T coso 4 \ T ot 52 ¢ 5
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11.3. Separation of Variables: Use of Fourier Series
- 1D Wave equation: @:Cz@ [Cz _Ij
ot? ox* P

2 B.C.’s: u(0,t) = u(L,t) =0 for all t
2 1.C.’s : u(x,0) = f(x), E;u — g(x

/ t=0
Initial deflection Initial velocity

Solving Steps: - Method of separation variables leading to two ODEs.
- Solutions of two egns. satisfying B.C'’s
- Final solution of wave eqn. satisfying I.C’s, using Fourier series

First Step: Two ODEs using method of separation variables

- u(x,t) = F)G(1) ‘ (deri\vc'ilt.i.ve Wirt E)/ (derivative w.r.t X)

(linear system) G _ F”:kzconst N F-kF=0

c°’G F G-c’kG=0

Second Step: Satisfying the B.C.’s
-u(0,t) = F(O)G(t) =0 Casel)G=0->u=0 (..G#0) Case 2) k=0 = F=0 (..k#0)
u(L,t) = F(L)G({) =0 Case 3) k=u? > F=0 ‘ . k = -p? (negative)



Solving F(x):
F'+p’F=0 = F(x) =f< cospx + Bsinpx <« apply B.C's: F(0) =F(L) =0

= F.(x) =sin%x for B=1 (n=12,--) (p=nmiL)

Solving G(t): G+22G=0 (kzchnj = G, (t)=B,cosA t+B sinAt

. . n
‘ u,(x,t) = (Bn COSA t+B, smknt)(smfnxj (n=212,--+)
(Eigenfunctions or characteristic functions) (4, €igenvalues or characteristic values)

U,: harmonic motion with frequency A, /2r=cn/2L (n*" normal mode)
n" normal mode has n-1 nodes

Tuning controlled by tension T (or c>=T/p) BB T T

Fig. 259. Normal modes of the vibrating string
Fig. 260. Second normal mode for various values of t



Third Step: Solution to the Entire Problem. Fourier Series

- Sum of many solutions u,, satisfying I.C.’s:

u(x,t) = i (Bn cosA t+B’ sinxnt)(sin%xj
n=1

- Satisfying I.C.1: initial displacement (u(x,0) = f(x))

u(x,O):Zanin%x:f(x) an%joLf(x)sin”iLde (Fourier sine series)
=1

- Satisfying 1.C.2: initial velocity (%_u
t

= Q(X)j

t=0 (Fourier sine series)

ou

e . in 2 (L . NTX
- :ZanngnTx:g(x) Bnkn_tjo g(x)sdex

- Solution (1): for the simple case of g(x) =0
- . NI cnr
u(x,t) :ZBn COSA t SIn—X (kn =—j (f*: odd periodic extension
=] L L of f with period 2L)

A T 1 gp/m I PEONSPRPS
_ZZ;B”Sln{L(X ct)}+2;anm{L(x+ct)} Z[f (X —ct) +f (x+ct)]



Odd periodic extension of f(X) \\_/i/\, =
Fig. 261. Odd periodic extension of f(x)

Physical Interpretation of the Solution

() [¥(x —ct)

f*(x - ct): a wave traveling to the right as t increases

constant along each line x - ct \/ 4 -

f*(x + ct): a wave traveling to the left as t increases N
. Fig. 262. Interpretation of (17)
constant along each line x + ct ; rpretation €
c: wave velocity
y e o A
- u(x,t): superposition of above two waves 0 L 2 :
t A

characteristic lines

—_— 1 =L/2¢

1 pxcy 4 3L _o Llwe 3L
0] L/3 L X 2! Hsjlt' el gl B =il

\ 4

Ex. 1) Vibrating string ST oy RN A i
if the initial deflection is triangular.
See Ex. 3 in Sec. 10.4 B v



Solution (ll): for the case of f(x)=0

u(x,t)=ZB;sinkntsin%x (k :cn_nj

n=1

1< o nr 1S o nr 1 Y
_EZBncos{T(x—ct)}—EZBnCOS{T(X+Ct)}—2C[G(x+ct) G(x —ct)]

n=1
S xa . N -y nm

X)=)» B,A,9n—X, G(X)=-)» B,ccos—x = G'(x) =g(x

000 =3 30 P, 60~ Bicens x> G0 =600

Solution (lll): for the general case of f(x)#0 and g(x)=0
u(x,t) :%[f (X +ct) +f (x —ct)]+2i[c;(x +ct)— G(x —ct)]
C

= P(X + ct) + Q(x —ct)

Exercise: Find the solution of the wave equation with following B.C.'s & I.C.’s
Uy = C2Uy,
B.C.’s: u,(0,t) = u,(r,t) = 0 for all t
I.C.’s: u(x,0) = f(x), u,(x,0) = g(x)
(use Fourier cosine series)



11.4. D’Alembert’s Solution of the Wave Equation

- Other method to obtain the solution of the wave eqn.  9%u _ 02& 2T
at®  ox®
u(x,t) 2 u(v,z) usingv =x +ct, z=x—ct

ou
u, =—=u,v, +U

2
X zzx’ uxx :—(ux): uvv + 2uvz + uzz’ utt =C (uvv _ 2uvz + uzz)
oX oX
‘ Cz(uvv_2uvz+uzz):C2(uvv+2uvz+uzz) = uvz = azu =0
0Zov

g—\lj =h(v) > u= j h(v)av +y(z) =o(v) +y(z) = u(x,t)=0¢(x +ct)+y(x—ct)

. o o o (D’ Alembert’s solution)
D’Alembert Solution Satisfying the Initial Conditions

U(%,0) = (x) + W(x) = (x) (K(X0) = 0(X0) ~W(Xo))
U, (%.0) = 09(X) = W () = 9(¥) = 6() ~W()=k(x,) +- [ g(e)ds

1 1 x 1
d(x)=—F(X)+—| a(s)ds+_-k(x,) act

2 chxo 2 qu(x,t):i[f(x+ct)+f(x—ct)]+ij g(s)ds
1 1 px 1 2 2C Ix—ct
V() =2f () -] a(e)ds——k(xo)

2 15 if g(s)=0



