
• An equation involving partial derivatives of an unknown function of two more independent variables 
 PDE

Classification of PDES
• Linear and nonlinear PDEs
Linear PDE: There is no product of the dependent variable and/or product of its derivatives within the

equation
Nonlinear PDE: The equation contains a product of the dependent variable and/or a product of the

derivatives

• Classification based on characteristics (paths of propagation of physical disturbances)
(I) First-order PDE: Almost all first-order PDEs have real characteristics, and therefore behave much like 

hyperbolic equations of second order.
(II) Second-order PDE: A second-order PDE in two dependent variables, x and y, may be expressed in a 

general form as 

Chap. 11. PARTIAL DIFFERENTIAL EQUATIONS
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• The equation is classified according to the expression (B2-4AC) as follows:
(B2-4AC)  < 0  Elliptic equation

= 0  Parabolic equation
> 0  Hyperbolic equation

(a) Elliptic equations
No real characteristic lines exist           
A disturbance propagates in all directions
Domain of solution is a closed region
Boundary conditions must be specified on the boundaries of the domain

(b) Parabolic equations
Only one characteristic line exists
A disturbance propagates along the characteristic line  
Domain of solution is an open region
An initial condition and two boundary conditions are required

(c) Hyperbolic equations
Two characteristic lines exist
A disturbance propagates along the characteristic lines
Domain of solution is an open region
Two initial conditions along with two boundary conditions are required 

• Boundary conditions
(a) Dirichlet B.C. (=Essential B.C.): The value of the dependent variable along the boundary is specified
(b) Neumann B.C (=Natural B.C.): The normal gradient of the dependent variable along with the

boundary is specified
(c) Mixed B.C. (Robbin B.C.): A combination of the Dirichlet and the Neumann type B.C.’s is specified



•11.1. Basic Concepts
- Linear & nonlinear
- Homogeneous & nonhomogeneous

Ex.1) Important linear 2nd-order PDEs

Theorem 1: Superposition or linearity principle
u1, u2: solutions of a linear homogeneous PDE in R, then
u = c1u1 + c1 u2 : also solution of that equation in R 

Ex. 1) A solution u(x,y) of PDE uxx-u=0
u(x,y) = A(y)ex + B(y)e-x

Ex. 2) PDE uxy = -ux
ux = p   py=-p:    p=c(x)e-y  u(x,y) = f(x)e-y + g(y) where 
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11.2. Modeling: Vibrating String, Wave Equation
- Equation governing small transverse vibration of an elastic string

Find the deflection u(x,t): 

Assumptions: - Constant mass/unit length, perfect elastic, no resistance to bending
- Negligible gravitational force
- Small transverse motion in vertical plane  vertical movement

Derivation of the PDE from forces
In horizontal direction: 

In vertical direction: 
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11.3. Separation of Variables: Use of Fourier Series
- 1D Wave equation:

2 B.C.’s: u(0,t) = u(L,t) = 0 for all t 

2 I.C.’s : u(x,0) = f(x),  

Solving Steps: - Method of separation variables leading to two ODEs.
- Solutions of two eqns. satisfying B.C’s
- Final solution of wave eqn. satisfying I.C’s, using Fourier series

First Step: Two ODEs using method of separation variables
- u(x,t) = F(x)G(t) 

Second Step: Satisfying the B.C.’s 
- u(0,t) = F(0)G(t) = 0        Case 1) G = 0  u = 0  (∴G≠0) Case 2) k=0  F=0 (∴k≠0)

u(L,t) = F(L)G(t) = 0        Case 3)  k=μ2  F=0                         ∴ k = -p2 (negative)
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Solving G(t): 

Un: harmonic motion with frequency λn/2π=cn/2L    (nth normal mode)
nth normal mode has n-1 nodes

Tuning controlled by tension T (or c2=T/ρ)
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Third Step: Solution to the Entire Problem. Fourier Series

- Sum of many solutions un satisfying I.C.’s: 

- Satisfying I.C.1: initial displacement (u(x,0) = f(x))

- Satisfying I.C.2: initial velocity 

- Solution (I): for the simple case of g(x) = 0
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Odd periodic extension of f(x)

Physical Interpretation of the Solution

f*(x - ct): a wave traveling to the right as t increases
constant along each line x - ct

f*(x + ct): a wave traveling to the left as t increases
constant along each line x + ct

c: wave velocity 

 u(x,t): superposition of above two waves

Ex. 1) Vibrating string 
if the initial deflection is triangular.

See Ex. 3 in Sec. 10.4
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Solution (II): for the case of f(x)=0

Solution (III): for the general case of f(x)≠0 and g(x)≠0

Exercise: Find the solution of the wave equation with following B.C.’s  & I.C.’s
utt = c2uxx

B.C.’s: ux(0,t) = ux(π,t) = 0  for all t
I.C.’s: u(x,0) = f(x), ut(x,0) = g(x)
(use Fourier cosine series)
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11.4. D’Alembert’s Solution of the Wave Equation
- Other method to obtain the solution of the wave eqn.

u(x,t)  u(v,z) using v = x + ct, z = x – ct

D’Alembert Solution Satisfying the Initial Conditions
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