Part B. Linear Algebra, Vector Calculus
Chap. 6: Linear Algebra; Matrices, Vectors, Determinants,

Linear Systems of Equations

- Theory and application of linear systems of equations, linear transformations, and
eigenvalue problems.

- Vectors, matrices, determinants, ...

6.1. Basic concepts
- Basic concepts and rules of matrix and vector algebra
- Matrix: rectangular array of numbers (or functions)

f

elements or entries
Reference: “Matrix Computations’ by G.H. Golub, C.F. Van Loan (1996)

| column Ex.1)5x -2y +z=0
T2 04 g row  +4z=0
5 -32:0

Coefficient matrix: |5 -2 1
3 0 4
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X )=0

n

fo(X1,Xs,

fo(X1,X0,00X,) =0

A1 Ao A, || X1 b,
Ay Ayx 8 || X2 | | by
_aﬂl Ao e amy__xn_ _bn_

General Notations and Concepts

Matrix : é,E a11 a12

Vector: a, b ay,; Ay

/ Row (Eqn.) T

N Column (Variabl ez
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a X, +a X, +-+a, X, =b

Xp)=0 é Ay Xy +8yXy +oo-+ 8,5, X,, =b,

n

Ax=Db
m X N matrix
m = n; square matrix
a,, | g;: principal or main diagonal
n .
3 of the matrix.
2n (important for simultaneous
linear equations)
amn_

- rectangular matrix that is not
square

tou
0
4
0



Vectors b, |
Row vector: b=|b;,...b,,] —— b'=| ! | Transpose
Columnvector:  [¢, | O
9:
_Cm_

Transposition
A (mxn)=A" (nxm)
a, a, - a,] Symmetricmarices A'=A (&' =3)

- I I . T_ T_
AT—[a ]_ a, a8, - a., Skew-symmetric matrices: A =-A (a; =-a)
= ~ 1% :

- Sguare matrices

a‘1n a2n

Properties of transpose;

(AT] =A, (A+BJ =AT +BT,

(kaJ =kAT, (ABC] =C"B"AT

Ch. 6: Linear Algebra
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Equalities of Matrices: A=B (a;=b;) samesize
Matrix Addition: C=A+B (c--=a--+bij) samesize

Scalar Multiplication: (=k)A =-kA

A+B=B+A cA+B)=cA+cB
U+v)+w=u+(v+w) (c+K)A =cA +kA
A+0=A clka)=(ck)a
A+(-A)=0 -

6.2. Matrix Multiplication
- Multiplication of matrices by matrices

m
A B = S Cy= Zaikbkj
k=1

(number of columns of 1% factor A = number of rows of 2" factor B)
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Difference from Multiplication of Numbers
- Matrix multiplication is not commutative in general: AB=#BA

- AB=0 " doesnot necessarily imply A =0 or B=0 or BA=0
- AC=AD doesnot necessarily imply C=D (even when A=0)

(kA)B=k(AB)=A (kB)
A (BC)=(aB)C

Special Matrices

Upper triangular matrix  Lower triangular matrix Banded matrix ~ Resultsof finite

difference solutions
for PDE or ODE.

<=

(especially,
tridiagonal)

Matrix can be decomposed into Lower & Upper triangular matrices
- LU decomposition
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Special Matrices:
a; #0,a; =0(1=]) Diagona matrix
&; =a;; Symmetric matrix, | or ly =1 (I;=0,i#]) Identity (or unit) matrix

Inner Product of Vectors

Q‘t_):[al a2 oo an] . = akbk

Product in Terms of Row and Column Vectors: émxnénxp =£mxp

Cix =8By (jthfirst row of A).(kth first column of B)

-] =

ab a-b, - oa-by ]
pp=| BB 2B &,
Q‘m'lgl gm.t_)z Q‘m'pp
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Linear Transformations
y=AX, X=Bw

—y=ABw=Cw

6.3. Linear Systems of Equations: Gauss Elimination
- The most important practical use of matrices: the solution of linear systems of equations

Linear System, Coefficient Matrix, Augmented Matrix

a X +a,,X,+ - +a,, X, =b,

Ay
Ay

a'ml

_ b=0:
=~ éﬁ =D b # 0: nonhomogeneous system
all a12
Augmented matrix | @z 8
am1 am2
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A,
Ay

a

m2

aln
a2n

a

aln bl
a1 b,

a b,

mn _|

homogeneous system (this has at least one solution, i.e., X = 0)
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Ex. 1) Geometric interpretation: Existence of solutions

A

X2
l Precisely one solution

=X1

Xq X1

(a) (b)

Same slope Infinite solutions ~ Very close to singular

Different intercept - ill-conditioned
No solution \/ - difficult to identify the solution

: - extremely sensitive to round-off error
Singular

Ch. 6: Linear Algebra
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Gauss Elimination

- Standard method for solving linear systems
- The elimination of unknowns can be extended to large sets of equations.
(Forward elimination of unknowns & solution through back substitution)

1 al12 al13 al14 X _bll_ | 1 a'12 a'13 al14 X bll

A B Ay Ay (| %|_| D, N 0 &y, &y aul||%|_|b;

- = = x| |b S ES I
|8y - CORIRY _b4_ &y _ CORIRS _b4_

During this operations the first row: pivot row (a;;: pivot e ement)
And then second row becomes pivot row: & ,, pivot e ement

(])- a:iz Z'Z Z'Z )): E,i X, =0y, )N(3 Ay X, =03 X =D—ay X,
0 - Ay || %5 ) b', ‘ 5= bli_.z & %

0O - = 11X b', e s .
- -0 =T Repeat back substitution, moving upward

Upper triangular form

Ch. 6: Linear Algebra
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Elementary Row Operation: Row-Equivalent Systems

- Interchange of two rows
- Addition of a constant multiple of one row to another row
- Multiplication of arow by anonzero constant ¢

@ Overdetermined: eguations > unknowns

Ch.

Determined: eguations = unknowns
Underdetermined: equations < unknowns

Consistent: system has at |east one solution.
Inconsistent: system has no solutions at all.

IC)
+
o
|l

oy

Homogeneous solution: x, ¢« AX=0 é(ﬁ ) AX, +AX,
Nonhomogeneous solution: x, ¢ AX =D /
X,*X;, 1s aso a solutions of the nonhomogeneous systems

Homogeneous systems: always consistent (why? trivial solution exists, x=0)
Theorem: A homogeneous system possess nontrivial solutionsif the number of m of
equations is |less than the number of n of unknowns (m < n)
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Echelon Form: Information Resulting from It

3 2 17 '3 2 1,3
0 -1/3 1/3|and |0 -1/3 1/3i -2
0 0 0 0 0 012

81Xy +8p,X, o+ Xy =by o
. (@) No solution: if r < m and one of the numbers
022X2+"’+Cznxn :b2 ~ ~

b4, b, iSNOL Zero.
~ (b) Precisely one solution: if r=n and
Cerr-I-'“-l-Can:br ~ ~

.6 b.q,..., 0, If present, are zero.

0=
"1 (c) Infinitely many solutions: if r < n and

~ b 5 , If present, are zero.

0= bm r+1 m

Existence and uniqueness of the solutions = Next issue
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@ Gauss-Jordan elimination: particularly well suited to digital computation

_1 a'12 a'13 a"14_ _Xl_ _b .1—

0 1 a,; ay||x|_|b, Multiplying the second row by & ;, and

0 - ay, |[ x| |b, subtracting the second row from the first
0o - - 1 |[X,] |by]

(1 0 a', a'y|[x]| [by] (1 0 0 O][x]| [bYy x, =b'",
0 1 al, a:24 X | _ b:z 0 1 0 0fx, _ b::z | x, =b",
0 - 1 a,|lx% b, 0 0 1 O x| |bY X, =b'",
0 - - 1 || %] by 0 0 O 1)|x,| |b")] x, =b'",

- The most efficient approach isto eliminate all elements both above and below the pivot
element in order to clear to zero the entire column containing the pivot element, except of
course for the 1 in the pivot position on the main diagonal.

Ch. 6: Linear Algebra
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@ LU-Decomposition

Gauss elimination:
- Forward elimination + back-substitution
(computation effort T)
- Inefficient when solving equations with the same coefficient A, but with different rhs constants B

LU Decomposition:
- Well suited for those situations where many rhs B must be evaluated for asingle value of A
—> Elimination step can be formulated so that it involves only operations on the matrix of coefficient A.
- Provides an efficient means to compute the matrix inverse.

(1) LU Decomposition AX=B
- LU decomposition separates the time-consuming elimination of A from the manipulations of rhs B.
—> once A has been “decomposed”’, multiple rhs vectors can be evaluated effectively.

» Overview of LU Decomposition
Ax-B=0
-Upper triangular form: (U U Ugg ) [ Xy d,
0 Uy, Uy (X, |=|d;
0 O ug)(X;s d, 1 0
- Assume lower diagonal matrix with 'sonthediagonal: L=|1, 1
I

Ch. 6: Linear Algebra
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Sothat L(Ux-D)=Ax-B
- Two-step strategy for obtaining solutions:
LU decomposition step: A > L and U
Substitution step: D from LD=B

x from Ux=D

» LU Decomposition Version of Gauss Elimination
a. Gauss Elimination:

Ay QA Az || Xg b,
Ay Ay Axn || X, |=|b,
dy; Az Az )\ X3 b,

Usef,, = a,/a; to eliminate a,,
f3, = ag,/ay; to eliminate a5,
fq, = d 5/d 5, to eliminate a;,

Storef’s
dpy & a3
fo dp @y A—LU
fa fp @'y

Ch. 6: Linear Algebra

(a) Decomposition

—> upper triangular matrix form!

[2] {x}

A

(o] [

~

e

- {3}

+ (b) Forward

¢ Substitution

+ (c) Backward
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b. Forward-substitution step: LD=B

i—1
d;=d, - > a;b; fori=23,..n
j=1

Back-substitution step: (identical to the back-substitution phase of conventional Gauss elimination)

n
x,=d /a_ & X = ‘:{:1 fori=n-1,n-2,...1

Ch. 6: Linear Algebra
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6.4. Rank of a Matrix: Linear Dependence. Vector Space
- Key concepts for existence and unigueness of solutions

Linear Independence and Dependence of Vectors
Given set of m vectors: a,, ..., a,, (same size)

Linear combination: C,& +C,a, +---+C_,a, (c; any scalars)
Ca +Ca+--+Ca,=0

- Conditions satisfying above relation:
(1) (Only) all zero ¢;'s: a, ..., &, are linearly independent.
(2) Above relation holds with scalars not all zero - linearly dependent.

ex) a, =k,a, +---+k a, (wherek,=-c;/c)

Ex. 1) Linear independence and dependence

a,=[3 0 2 2]
a,=[-6 42 24 54] 6a, -0.58, -8, =0
a, = [21 -21 0 _15] Two vectors are linearly independent.

- Vectors can be expressed into linearly independent subset.

Ch. 6: Linear Algebra
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Rank of a Matrix
- Maximum number of linearly independent row vectors of a matrix A=[a,]: rank A

Ex. 3) Rank

é:

3

-6 42 24 54
21 -21 0

- rank A=0 iff A=0

0

2

5
- rank =2

-15

Theorem 1: (rank in terms of column vectors)

The rank of a matrix A equals the maximum number of linearly independent column
vectors of A. > A and AT same rank.

- Maximum number of linearly independent row vectors of A(r) cannot exceed the
maximum number of linearly independent column vectors of A.

Ex. 4)

2

24

0

2
3

Ch. 6: Linear Algebra

3
-6
21

0 2 3

22|, | 54 |=2|-6|+2
3 21

~21| |-15 21

0
42
-21
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Vector Space, Dimension, Basis

- Vector space: a set V of vectors such that with any two vectors a and b in V all their
linear combination c.a+Bb are elements of V.

Let V be a set of elements on which two operations called vector addition and scalar
multiplication are defined. Then V is said to be a vector space if the following ten
properties are satisfied.

Axioms for vector addition

() If xand y are in V, then xty isin V.

(i) For all X, y in V, x+y = y+x

(i) For all x, y, Zin V, x+(y+z) = (x+y) +z

(iv) There is a unique vector 0 inV suchthat 0+ x=x+0 =

(v) For each x in V, there exists a vector —x such that x+(- x) = (-x)+x=0

Axioms for scalar multiplications

(vi) If kis any scalar and x isin V, then kx is in V
(vii) k(x+y) = kx + ky

(viil) (ky+ko)x = kyX + koX

(Ix) kq(koX) = (kikp)X

(X) 1x = X

Ch. 6: Linear Algebra
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Vector Space, Dimension, Basis

- Subspace: If a subset W of a vector space V is itself a vector space under the
operations of vector addition and scalar multiplication defined on V, then
W is called a subspace of V.

() If xand y are in W, then x+y isin W.
(i) If x is in W and k is any scalar, then kx is W.
- Dimension: (dim V) the maximum number of linearly independent vectors in V.

- Basis for V: a linearly independent set in V consisting of a maximum possible
number of vectors in V.
(number of vectors of a basis for V = dim V)

- Span: the set of linear combinations of given vectors a,, ..., a, with the same number
of components (Span is a vector space)

Ex. 5) Consider a matrix A in Ex.1.: vector space of dim 2, basis a,, a, or a,, a,

- Row space of A: span of the row vectors of a matrix A
Column space of A: span of the column vectors of a matrix A

Theorem 2: The row space and the column space of a matrix A have the same
dimension, equal to rank A.

Ch. 6: Linear Algebra
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Invariance of Rank under Elementary Row Operations

Theorem 3: Row-equivalent matrices
Row-equivalent matrices have the same rank.
(Echelon form of A: no change of rank property)

ex.6) [3 0 2 27 [3 0 2 2]
A=|-6 42 24 54| = |0 42 28 58|  rankA=2
21 -212 0 -15/ |0 O O O]

—> Practical application of rank in connection with the linearly independence and
dependence of the vectors

Theorem 4: p vectors xy, ..., X,, (with n components) are linearly independent if the
matrix with row vectors x,, ..., X, has rank p: they are linearly dependent if
that rank is less than p.

Theorem 5: p vectors with n < p components are always linearly dependent.

Theorem 6: The vector space R" consisting of all vectors with n components has
dimension n.

Ch. 6: Linear Algebra
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6.5. Solutions of Linear Systems: Existence, Uniqueness, General Form
Theorem 1: Fundamental theorem for linear systems

(a) Existence: m equations in n unknowns
8y Xy +apX, +o X, =Dy
a, X, +a,X, +-+a,, X, =D,

a X, +a X,+---+a_ X =b_

has solutions iff the coefficient matrix A and the augmented matrix A have the same
rank.

(b) Uniqueness: above system has precisely one solution iff this common rank r of A
and A equals n.

(c) Infinitely many solutions: If rank of A = r < n, system has infinitely many solutions.

(d) Gauss elimination: If solutions exist, they can all be obtained by the Gauss
elimination.

Ch. 6: Linear Algebra
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The Homogeneous Linear System

Theorem 2: Homogeneous system
- A homogeneous linear system always has the trivial solution, x,=0,..., x,=0

A Xy +a X, -+ X
A, X, +a,X, +-+a, X, =0

a X, +a X, +---+a X =0

- Nontrivial solutions exist iff rank A<n.

- If rank A=r<n, these solutions, together with x=0, form a vector space of dimension
n-r, called the solution space of above system.

- If X, and x, are solution vectors, then x=c,x,+C,X, is also solution vector.

Theorem 3: A homogeneous linear system with fewer equations than unknowns
always has nontrivial solutions.

The Nonhomogeneous Linear System

Theorem 4: If a nonhomogeneous linear system of equations of the form Ax=b has
solutions, then all these solutions are of the form

X = Xo + X}, (Xg is any.fixed.solution.of AxabXm=solution.of homogeneous system)

Ch. 6: Linear Algebra Sl DA St




6.6. Determinants. Cramer’s Rule

- Impractical in computations, but important in engineering applications (eigenvalues,
DEs, vector algebra, etc.)

- associated with an nxn square matrix
Second-order Determinants

D_detA_all dpp|
=0etA = =385 — 8
Ay Ay
Ex. 2) Cramer’s rule:
b, a, a, b
A Xy +apX, =b; . = b, a, _ bja, —ay,b, | b, _ay,b, —a,b;
1= = y Xo = =
A, X, +8,X, =b, D D D D
Third-order Determinants
A1 S 3
_ _ . B2 Az A O3 A g3
D=la a .| =a —a +a
21 Qg Ayl =ap 21 31
Ay Adgs A Qg Ay  Aog
Ady; @8z Agg
Ex. 3) Cramer’s rule b, a, aj
b, a a
o Qyp Ay
A1 X; +8X, + X3 =0y D b a. a
_ Dy [Pz Az ag

# D
Ch. 6: Lirfaaraigfea®2 T ds3%s = Bs
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Determinant of Any Order n

dp Qp -
a a v a
Ay Ay Ay

D=a,C;+a,Cp,+---+,,C;, (J=12,---,n)
D=a,Cy +a,Cy +---+a,C  (k=12,---,n)

Cjk = (_1)j+k M ik n .
D :Z(_l)j+kajkM ik (1=12,---,n)
Minor of g, in D k=1

Cofactor of a, in D n .
J D= (-)"™ayM, (k=12--,n)
j=1

Ex. 4) Third-order determinant
dp; Q3

M 21 —
Az As;

’ 21:_M21

Ch. 6: Linear Algebra
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General Properties of Determinants

Theorem 1: (a) Interchange of two rows multiplies the value of the determinant by —1.
(b) Addition of a multiple of a row to another row does not alter the value of the

determinant.

(c) Multiplication of a row by ¢ multiplies the value of the determinant by c.

Ex. 7) Determinant by reduction to triangular form

2 0

4 5
D=

0O 2

-3 8

~4 6
1 0
6 -1
9 1

2

0
0
0

0 -4 6

5 9 -12
0 24 38
0 0 4725

Theorem 2: (d) Transposition leaves the value of a determinant unaltered.

(e) A zero row or column renders the value of a determinant zero.

(f) Proportional rows or columns render the value of a determinant zero. In particular,
a determinant with two identical rows or columns has the value zero.

Ch. 6: Linear Algebra
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General Properties of Determinants

Theorem 1: (a) Interchange of two rows multiplies the value of the determinant by —1.
(b) Addition of a multiple of a row to another row does not alter the value of the
determinant.
(c) Multiplication of a row by ¢ multiplies the value of the determinant by c.

det(kA) = k" det A

Ex. 7) Determinant by reduction to triangular form

2 0 -4 6 220 -4 6
4 5 1 O O5 9 -12
D= =
O 2 6 -1 O 0 24 38
-3 8 9 1 O O O 4725

Theorem 2: (d) Transposition leaves the value of a determinant unaltered.
(e) A zero row or column renders the value of a determinant zero.
(f) Proportional rows or columns render the value of a determinant zero.
In particular, a determinant with two identical rows or columns has the value zero.

Ch. 6: Linear Algebra
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Rank in Terms of Determinants
- Rank ~~~ determinants

Theorem 3: An m x n matrix A=[a] has rank r 21 iff A has an r x r submatrix with
nonzero determinant, whereas the determinant of every square submatrix
with r+1 or more rows that A has is zero.

- If A is square, n x n, it has rank n iff det A=0.

Cramer’s Rule
- Not practical in computations, but theoretically interesting in DEs and others

Theorem 4: (a) Linear system of n equations in the same number of unknowns, x

a X, +a,X,+-+a, X,=Db

n

If this system has a nonzero coefficient determinant D=det A, it has
precisely one solution.

Ch. 6: Linear Algebra
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(b) If the system is homogeneous and D=0, it has only the trivial solution x=0. If D=0,
the homogeneous system also has nontrivial solutions.

- If A has an inverse, then A is a nonsingular matrix (unique inverse !)
~~ no inverse, ~~ a singular matrix.

Theorem 1: Existence of the inverse
The inverse Al of an n x n matrix A exists iff rank A=n, hence iff det A#0. Hence A is
nonsingular if rank A = n, and is singular if rank A < n.

Determination of the Inverse
- n X N matrix A 2 n x nidentity matrix I, | matrix > A

a, a, - a,|/1 0 0 O

Ay ayp - @01 0 0
L e AlD = (|A™

a, a, - a, /0 0 0 1

Ch. 6: Linear Algebra
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@ Matrix Inverse
AAT=ATA=1

a. Calculating theinverse
- The inverse can be computed in a column-by-column fashion
by generating solutions with unit vectors as the rhs constants.

1
b=| 0| resulting solution will be
0 the first column of the matrix inverse.
0
b= % ... the second column of the matrix inverse

—> Best way: use the LU decomposition algorithm
(evaluate multiple rhs vectors)

b. Matrix inversion by Gauss-Jordan elimination

Ly

- Inverse problem

implicit double precision {a-h,o0-z)
parameter (n=500)

double precision bb{n,n),bbi{n,n)
integer indx(n)

. insert your program

Inverse matrix

¢ bb ---> bbi

do 112 i=1
do 113 j=1,
bbi(i,j) =
continue
bbi(i,i) = 1.d8
continue

call ludcmp(bb,n,indx,dtmp)

do 114 j=1,n

call lubksb{bb,n,indx,bbi{1,j))
continue

. insert your program

stop
end

The sguare matrix A-1 assumes the role of the column vector of unknown x, while square matrix | assumes

the role of the rhs column vector B.

2 1 1}{1 0 OJ {1 1/2 1/2][1/2 0 0\ (1 12 1Y2\(1y2 o0 OJ [1 0 0}{3/4
12 1//0 1 0|=|1 2 1 010‘—)'03/2]/2 ~1/2 0 0|—>|0 1 Of|-v4
11200 1) (1 T2 gm0 1) | —1/4

Ch. 6: Linear Algebra
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Some Useful Formulas for Inverse
Theorem 2: The inverse of a nonsingular n x n matrix A=[a;] is given by

A11 A21 Anl
-1 1 [ ]T 1 A12 Azz An2
B g™ Twma | 0
_Aln A2n Ann_

where A; is the cofactor of a in det A.

A:|:a11 a12:|:>A—1: 1 {azz _312}
dy 8y = detA |-a;, &y

Ex. 3) For 3 x 3 matrix

- Diagonal matrices A have an inverse iff all a;#0. Then A is diagonal with entries
1/a, ..., l/a,,.

Ex. 4) Inverse of a diagonal matrix

- (Ag=CA"

Ch. 6: Linear Algebra
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Vanishing of Matrix Products. Cancellation Law
- Matrix multiplication is not commutative in general;: AB#BA

- AB=0 " does not necessarily imply A=0 or B=0 or BA=0
- AC=AD does not necessarily imply C=D  (even when A=0)

Theorem 3: Cancellation law
Let A, B, C be n x n matrices. Then
(a) If rank A=n and AB=AC, then B=C
(b) If rank A=n, then AB=0 implies B=0. Hence if AB=0, but A0 as well as B0
then rank A <n and rank B < n.
(c) If A is singular, so are BA and AB.

Determinants of Matrix Products
Theorem 4: For any n x n matrices A and B

det(AB)= det(BA )= det A det B

Ch. 6: Linear Algebra
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