Chapter 4. Fundamentals of Material Balances

고려대학교 화공생명공학과

Introduction

- Material Balance (Mass Balance)
 - Based on the law of conservation of the mass
 - (total mass input) = (total mass output)
- Objectives of this chapter
 - Drawing process diagrams
 - Writing material balance equations
 - Understanding process variables
 - Solving equations with unknown variables

4.1 Process Classification

- Classification of processes
 - Batch: feed is charged, products are removed some time later
 - Continuous: inputs and outputs flow continuously
 - Semibatch process: mixed process
 - Steady state (정상상태): process variables do not change with time
 - Transient (unsteady) state (과도상태) : process variables change with time : small scale productions

Balances

The general balance equations

```
(Input) + (Generation)
= (Output) + (Consumption) + (Accumulation)
```

- Balance (or Inventory)
- Two types of balances
 - Differential balance : per time
 - Integral balance : during a certain period of time

Example

Problem

100 kg/hr of a mixture of benzene (B) and toluene(T) that contains 50% benzene by mass are separated by distillation into two fractions. The mass flow rate of benzene in the top stream is 450 kg B/hr and that of toluene in the bottom stream is 475 kg T/hr. The operation is at steady state. Write balances on benzene and toluene to calculate unknown component flow rate in the output streams.

Material Balance

* Benzene balance

$$500 = 450 + q_1$$

* Toluene Balance

$$500 = q_2 + 475$$

Solution:

$$Q_1 = 50 \text{ kg T/hr}$$

$$Q_2 = 50 \text{ kg B/hr}$$

Integral balances on batch or semibatch processes

- Integral balance on batch processes
 - Sometimes it can be treated like steady-state processes
- Integral balance on Semi-batch and continuous process
 - Sometime it can be easily solved.
 - Require integration over period of time

4.3 Material Balance Calculations

Objective :

Given values of input, output → calculate unknown values

- Flow Charts: simple way to visualize process flow
 - PFD (Process flow diagram)
 - P&ID (Process and Instrument diagram), ...

Benefits of using flowcharts

Process Description

The catalytic dehydrogenation of propane is carried out in a continuous packed bed reactor. One thousand pounds per hour of pure propane are fed to preheater where they are heated to a temperature of 670 C before they pass into the reactor. The reactor effluent gas, which includes propane, propylene, methane and hydrogen, is cooled from 800 C to 100 C and fed to an absorption tower where the propane and propylene are dissolved in oil. The oil then goes to a stripping tower in which it is heated, releasing the dissolved gases; these gases are recompressed and sent to a high pressure distillation column in which the propane and propylene are separated. The product stream from the distillation column contains 98 % propane. The stripped oil is recycled to the absorption tower.

Complex, not easy to understand

Drawing a flowchart

Write the values and units of all known stream variables at the location of the streams on the chart.

400 mol/h $0.21 \text{ mol } O_2 / \text{mol}$ $0.79 \text{ mol } N_2 / \text{mol}$ T=320 °C, P=1.4 atm

- Assign algebraic symbols to unknown stream variables.
- Write variable names and units on the chart.

```
\frac{400 \text{ mol/h}}{\text{x mol O}_2/\text{mol}} \frac{(1-x) \text{ mol N}_2/\text{mol}}{\text{T}=320 \text{ °C}, P=1.4 \text{ atm}}
```

Material Balances

- Flowchart scaling up/down
 - Changing values of all amounts or flow rates by proportional amount.
 - Compositions remain unchanged.
- Basis of calculation
 - If flow rates are given, use specified values and units.
 - If flow rates are not given, assume one of input flow rates.

Problem Bookkeeping

- A procedure to discover that all the required information is available to solve specified problem.
- Procedure
 - Drawing flowchart
 - Identifying variables
 - Identifying equations
 - Degree of freedom analysis

Available Relations

- Material balances
 - No. of species (N) = No. of equations
- An energy balance
 - One unknown (T, Q, or m)
- Process specification
 - Requirement (based on economics,...)
- Physical properties and laws
 - Thermodynamic relations and physical properties data
- Physical constraints
 - $X1 = 1 \text{ then } X2 = 1-X1, \dots$

Outline of a Procedure for Material Balance Calculations

- Draw a flow chart, and fill in all given values.
- Choose as a basis of calculation an amount or flow rate of one of the process streams.
- Label unknown stream variables on the chart.
- Do the problem bookkeeping.
- Convert volume flow rates to mass or molar flow rates.
- Convert mixed mass and molar flow rates to mass or molar flow rates.
- Translate given information to equations.
- Write material balance equations.
- Solve equations.
- Scale up/down.